Defining the balance between optimal immunity and immunopathology in influenza virus infection

Iuliano, A. D. et al. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet 391, 1285–1300 (2018).

Article  PubMed  Google Scholar 

GBD 2017 Influenza Collaborators. Mortality, morbidity, and hospitalisations due to influenza lower respiratory tract infections, 2017: an analysis for the Global Burden of Disease Study 2017. Lancet Respir. Med. 7, 69–89 (2019).

Article  Google Scholar 

Kang, M., Zanin, M. & Wong, S. S. Subtype H3N2 influenza A viruses: an unmet challenge in the western Pacific. Vaccines 10, 112 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pendrey, C. G. et al. The re-emergence of influenza following the COVID-19 pandemic in Victoria, Australia, 2021 to 2022. Eur. Surveill. 28, 2300118 (2023).

Article  Google Scholar 

Zhu, W. & Gu, L. Clinical, epidemiological, and genomic characteristics of a seasonal influenza A virus outbreak in Beijing: a descriptive study. J. Med. Virol. 95, e29106 (2023).

Article  CAS  PubMed  Google Scholar 

Dhanasekaran, V. et al. Human seasonal influenza under COVID-19 and the potential consequences of influenza lineage elimination. Nat. Commun. 13, 1721 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Australian influenza surveillance report. Australian Government Department of Health and Aged Care https://www.health.gov.au/sites/default/files/2023-10/aisr-fortnightly-report-no-14-2-october-to-15-october-2023.pdf (2023).

Caini, S. et al. The epidemiological signature of influenza B virus and its B/Victoria and B/Yamagata lineages in the 21st century. PLoS ONE 14, e0222381 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ambrose, C. S. & Levin, M. J. The rationale for quadrivalent influenza vaccines. Hum. Vaccin. Immunother. 8, 81–88 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Short, K. R., Kedzierska, K. & van de Sandt, C. E. Back to the future: lessons learned from the 1918 influenza pandemic. Front. Cell Infect. Microbiol. 8, 343 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krammer, F. et al. Influenza. Nat. Rev. Dis. Prim. 4, 3 (2018).

Article  PubMed  Google Scholar 

Gao, R. et al. Human infection with a novel avian-origin influenza A (H7N9) virus. N. Engl. J. Med. 368, 1888–1897 (2013).

Article  CAS  PubMed  Google Scholar 

Wille, M. & Klaassen, M. No evidence for HPAI H5N1 2.3.4.4b incursion into Australia in 2022. Influenza Other Respir. Viruses 17, e13118 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Gilbertson, B. & Subbarao, K. Mammalian infections with highly pathogenic avian influenza viruses renew concerns of pandemic potential. J. Exp. Med. 220, e20230447 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalil, A. C. & Thomas, P. G. Influenza virus-related critical illness: pathophysiology and epidemiology. Crit. Care 23, 258 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Tran, D. et al. Hospitalization for influenza A versus B. Pediatrics 138, e20154643 (2016).

Article  PubMed  Google Scholar 

Puig-Barbera, J. et al. Influenza epidemiology and influenza vaccine effectiveness during the 2015-2016 season: results from the Global Influenza Hospital Surveillance Network. BMC Infect. Dis. 19, 415 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Bender, B. S. & Small, P. A. Jr. Influenza: pathogenesis and host defense. Semin. Respir. Infect. 7, 38–45 (1992).

CAS  PubMed  Google Scholar 

Byrd-Leotis, L. et al. Influenza binds phosphorylated glycans from human lung. Sci. Adv. 5, eaav2554 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, Z. et al. Structural analyses of Toll-like receptor 7 reveal detailed RNA sequence specificity and recognition mechanism of agonistic ligands. Cell Rep. 25, 3371–3381.e5 (2018).

Article  CAS  PubMed  Google Scholar 

Wisskirchen, C., Ludersdorfer, T. H., Muller, D. A., Moritz, E. & Pavlovic, J. The cellular RNA helicase UAP56 is required for prevention of double-stranded RNA formation during influenza A virus infection. J. Virol. 85, 8646–8655 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pichlmair, A. et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314, 997–1001 (2006).

Article  CAS  PubMed  Google Scholar 

Te Velthuis, A. J. W. et al. Mini viral RNAs act as innate immune agonists during influenza virus infection. Nat. Microbiol. 3, 1234–1242 (2018).

Article  Google Scholar 

Goffic, R. L. et al. Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia. PLoS Pathog. 2, e53 (2006).

Article  PubMed  PubMed Central  Google Scholar 

Poux, C. et al. A single-stranded oligonucleotide inhibits Toll-like receptor 3 activation and reduces influenza A (H1N1) infection. Front. Immunol. 10, 2161 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rappe, J. C. F. et al. A TLR7 antagonist restricts interferon-dependent and -independent immunopathology in a mouse model of severe influenza. J. Exp. Med. 218, e20201631 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jansen, A. J. G. et al. Influenza-induced thrombocytopenia is dependent on the subtype and sialoglycan receptor and increases with virus pathogenicity. Blood Adv. 4, 2967–2978 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koupenova, M. et al. The role of platelets in mediating a response to human influenza infection. Nat. Commun. 10, 1780 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Galani, I. E. et al. Interferon-λ mediates non-redundant front-line antiviral protection against influenza virus infection without compromising host fitness. Immunity 46, 875–890.e6 (2017).

Article  CAS  PubMed  Google Scholar 

Klinkhammer, J. et al. IFN-λ prevents influenza virus spread from the upper airways to the lungs and limits virus transmission. eLife 7, e33354 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Davidson, S., Crotta, S., McCabe, T. M. & Wack, A. Pathogenic potential of interferon αβ in acute influenza infection. Nat. Commun. 5, 3864 (2014).

Article  CAS  PubMed  Google Scholar 

Major, J. et al. Type I and III interferons disrupt lung epithelial repair during recovery from viral infection. Science 369, 712–717 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Korteweg, C. & Gu, J. Pathology, molecular biology, and pathogenesis of avian influenza A (H5N1) infection in humans. Am. J. Pathol. 172, 1155–1170 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weinheimer, V. K. et al. Influenza A viruses target type II pneumocytes in the human lung. J. Infect. Dis. 206, 1685–1694 (2012).

Article  PubMed  Google Scholar 

Stegemann-Koniszewski, S. et al. Alveolar type II epithelial cells contribute to the anti-influenza A virus response in the lung by integrating pathogen- and microenvironment-derived signals. mBio 7, e00276-16 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Short, K. R. et al. Influenza virus damages the alveolar barrier by disrupting epithelial cell tight junctions. Eur. Respir. J. 47, 954–966 (2016).

Article  CAS  PubMed  Google Scholar 

Dunning, J. et al. Progression of whole-blood transcriptional signatures from interferon-induced to neutrophil-associated patterns in severe influenza. Nat. Immunol. 19, 625–635 (2018). This paper provides an extensive analysis of acute host responses in adults hospitalized with influenza revealing distinct IFN-related signatures associated with milder disease and neutrophil-dominated inflammatory responses with severe outcomes.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sidhu, J. K. et al. Delayed mucosal anti-viral responses despite robust peripheral inflammation in fatal COVID-19. J. Infect. Dis. https://doi.org/10.1093/infdis/jiad590 (2023).

Garcia-Sastre, A. Induction and evasion of type I interferon responses by influenza viruses. Virus Res. 162, 12–18 (2011).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif