Akkermansia muciniphila exoglycosidases target extended blood group antigens to generate ABO-universal blood

Blood Safety and Availability (World Health Organization, accessed 20 February 2024); www.who.int/news-room/fact-sheets/detail/blood-safety-and-availability

Daniels, G. Human Blood Groups 3rd edn (John Wiley, 2013).

Clausen, H. & Hakomori, S. ‐I. ABH and related histo‐blood group antigens; immunochemical differences in carrier isotypes and their distribution. Vox Sang. 56, 1–20 (1989).

CAS  PubMed  Google Scholar 

Hakomori, S. & Strycharz, G. D. Cellular blood-group substances. I. Isolation and chemical composition of blood-group ABH and Leb isoantigens of sphingoglycolipid nature. Biochemistry 7, 1279–1286 (1968).

Article  CAS  PubMed  Google Scholar 

Jarnefelt, J., Rush, J., Li, Y. T. & Laine, R. A. Erythroglycan, a high molecular weight glycopeptide with the repeating structure [galactosyl-(1 leads to 4)-2-deoxy-2-acetamido-glucosyl(1 leads to 3)] comprising more than one-third of the protein-bound carbohydrate of human erythrocyte stroma. J. Biol. Chem. 253, 8006–8009 (1978).

Clausen, H. & Olsson, M. L. Towards universally acceptable blood. Nat. Microbiol. 4, 1426–1427 (2019).

Article  CAS  PubMed  Google Scholar 

Goldstein, J. et al. Group B erythrocytes enzymatically converted to group O survive normally in A, B and O individuals. Science 215, 168–170 (1982).

Article  CAS  PubMed  Google Scholar 

Liu, Q. P. et al. Bacterial glycosidases for the production of universal red blood cells. Nat. Biotechnol. 25, 454–464 (2007).

Article  CAS  PubMed  Google Scholar 

Rahfeld, P. et al. An enzymatic pathway in the human gut microbiome that converts A to universal O type blood. Nat. Microbiol. 4, 1475–1485 (2019).

Article  CAS  PubMed  Google Scholar 

Kruskall, M. S. et al. Transfusion to blood group A and O patients of group B RBCs that have been enzymatically converted to group O. Transfusion 40, 1290–1298 (2000).

Article  CAS  PubMed  Google Scholar 

Lenny, L. L., Hurst, R., Goldstein, J., Benjamin, L. J. & Jones, R. L. Single-unit transfusions of RBC enzymatically converted from group B to group O to A and O normal volunteers. Blood 77, 1383–1388 (1991).

Article  CAS  PubMed  Google Scholar 

Lenny, L. L., Hurst, R. & Galbraith, R. A. Transfusions to group O subjects of 2 units of red cells enzymatically converted from group B to group O. Transfusion 34, 209–214 (1994).

Article  CAS  PubMed  Google Scholar 

Olsson, M. L. & Clausen, H. Modifying the red cell surface: towards an ABO-universal blood supply. Br. J. Haematol. 140, 3–12 (2008).

Article  CAS  PubMed  Google Scholar 

Jeyakanthan, M. et al. Chemical basis for qualitative and quantitative differences between ABO blood groups and subgroups: implications for organ transplantation. Am. J. Transplant. 15, 2602–2615 (2015).

Article  CAS  PubMed  Google Scholar 

Clausen, H. et al. Blood group a glycolipid (AX) with globo-series structure which is specific for blood group A1 erythrocytes: one of the chemical bases for A1 and A2 distinction. Biochem. Biophys. Res. Commun. 124, 523–529 (1984).

Article  CAS  PubMed  Google Scholar 

Clausen, H., Levery, S. B., Nudelman, E., Tsuchiya, S. & Hakomori, S. Repetitive A epitope (type 3 chain A) defined by blood group A1-specific monoclonal antibody TH-1: chemical basis of qualitative A1 and A2 distinction. Proc. Natl Acad. Sci. USA 82, 1199–1203 (1985).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clausen, H., Holmes, E. & Hakomori, S. I. Novel blood group H glycolipid antigens exclusively expressed in blood group A and AB erythrocytes (type 3 chain H). II. Differential conversion of different H substrates by A1 and A2 enzymes and type 3 chain H expression in relation to secretor status. J. Biol. Chem. 261, 1388–1392 (1986).

Article  CAS  PubMed  Google Scholar 

Clausen, H., Levery, S. B., Kannagi, R. & Hakomori, S. I. Novel blood group H glycolipid antigens exclusively expressed in blood group A and AB erythrocytes (type 3 chain H). I. Isolation and chemical characterization. J. Biol. Chem. 261, 1380–1387 (1986).

Article  CAS  PubMed  Google Scholar 

Ricci Hagman, J. et al. β1,3GalNAc-T1-dependent extension of the human blood group B antigen results in a novel ABO-related glycolipid structure on erythrocytes. Vox Sang. 114, 53 (2019).

Google Scholar 

Kelly, R. J., Rouquier, S., Giorgi, D., Lennon, G. G. & Lowe, J. B. Sequence and expression of a candidate for the human secretor blood group α(1,2)fucosyltransferase gene (FUT2). Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype. J. Biol. Chem. 270, 4640–4649 (1995).

Article  CAS  PubMed  Google Scholar 

Tailford, L. E., Crost, E. H., Kavanaugh, D. & Juge, N. Mucin glycan foraging in the human gut microbiome. Front. Genet. 6, 81 (2015).

Derrien, M., Vaughan, E. E., Plugge, C. M. & de Vos, W. M. Akkermansia municiphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol. 54, 1469–1476 (2004).

Article  CAS  PubMed  Google Scholar 

Shuoker, B. et al. Sialidases and fucosidases of Akkermansia muciniphila are crucial for growth on mucin and nutrient sharing with mucus-associated gut bacteria. Nat. Commun. 14, 1833 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gregg, K. J., Finn, R., Abbott, D. W. & Boraston, A. B. Divergent modes of glycan recognition by a new family of carbohydrate-binding modules. J. Biol. Chem. 283, 12604–12613 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kadowaki, S., Ueda, T., Yamamoto, K., Kumagai, H. & Tochikura, T. Isolation and characterization of a blood group A substance-degrading α-N-acetylgalactosaminidase from an Acremonium sp. Agric. Biol. Chem. 53, 111–120 (1989).

CAS  Google Scholar 

Hult, A. K. & Olsson, M. L. Many genetically defined ABO subgroups exhibit characteristic flow cytometric patterns. Transfusion 50, 308–323 (2010).

Article  CAS  PubMed  Google Scholar 

Teze, D. et al. The catalytic acid-base in GH109 resides in a conserved GGHGG loop and allows for comparable α-retaining and β-inverting activity in an N-acetylgalactosaminidase from Akkermansia muciniphila. ACS Catal. 10, 3809–3819 (2020).

Article  CAS  Google Scholar 

Anso, I. et al. Turning universal O into rare Bombay type blood. Nat. Commun. 14, 1765 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pichler, M. J. et al. Butyrate producing colonic Clostridiales metabolise human milk oligosaccharides and cross feed on mucin via conserved pathways. Nat. Commun. 11, 3285 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McGuire, B. E. et al. The structure of a family 110 glycoside hydrolase provides insight into the hydrolysis of a-1,3-galactosidic linkages in λ-carrageenan and blood group antigens. J. Biol. Chem. 295, 18426–18435 (2020).

Article  CAS  PubMed  Google Scholar 

Pluvinage, B. et al. Architecturally complex O-glycopeptidases are customized for mucin recognition and hydrolysis. Proc. Natl Acad. Sci. USA 118, e2019220118 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu, W., Yang, W., Wang, Y., Wang, M. & Zhang, M. Structural and biochemical analyses of β-N-acetylhexosaminidase Am0868 from Akkermansia muciniphila involved in mucin degradation. Biochem. Biophys. Res. Commun. 529, 876–881 (2020).

Article  CAS  PubMed  Google Scholar 

Gao, H. W. et al. Evaluation of group A1B erythrocytes converted to type as group O: studies of markers of function and compatibility. Blood Transfus. 14, 168–174 (2016).

PubMed  PubMed Central  Google Scholar 

Robbe, C., Capon, C., Coddeville, B. & Michalski, J. C. Structural diversity and specific distribution of O-glycans in normal human mucins along the intestinal tract. Biochem. J. 384, 307–316 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aoki, T. A comprehensive review of our current understanding of red blood cell (RBC) glycoproteins. Membranes 7, 56 (2017).

Higgins, M. A., Ficko-Blean, E., Meloncelli, P. J., Lowary, T. L. & Boraston, A. B. The overall architecture and receptor binding of pneumococcal carbohydrate-antigen-hydrolyzing enzymes. J. Mol. Biol. 411, 1017–1036 (2011).

Article  CAS  PubMed  Google Scholar 

Hobbs, J. K., Pluvinage, B., Robb, M., Smith, S. P. & Boraston, A. B. Two complementary α-fucosidases from Streptococcus pneumoniae promote complete degradation of host-derived carbohydrate antigens. J. Biol. Chem. 294, 12670–12682 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, A. et al. Conversion of blood type A donor lungs into universal blood type lungs using ex vivo ABO enzymatic treatment. Sci. Transl. Med. 14, eabm7190 (2022).

MacMillan, S., Hosgood, S. A. & Nicholson, M. L. Enzymatic blood group conversion of human kidneys during ex vivo normothermic machine perfusion. Br. J. Surg. 110, 133–137 (2023).

Article  PubMed  Google Scholar 

Nielsen, H. Predicting secretory proteins with signaIP. Methods Mol. Biol. 1611, 59–73 (2017).

Article  CAS  PubMed  Google Scholar 

Gildea, R. J. & Winter, G. Determination of Patterson group symmetry from sparse multi-crystal data sets in the presence of an indexing ambiguity. Acta Crystallogr. D 74, 405–410 (2018).

Article  CAS 

留言 (0)

沒有登入
gif