Melatonin: a ferroptosis inhibitor with potential therapeutic efficacy for the post-COVID-19 trajectory of accelerated brain aging and neurodegeneration

Marzouk M, et al. Modeling COVID-19 Effects on Sustainable Development Goals in Egypt Using System Dynamics. 2022.

Book  Google Scholar 

Jennings G, et al. A systematic review of persistent symptoms and residual abnormal functioning following acute COVID-19: ongoing symptomatic phase vs. post-COVID-19 syndrome. J Clin Med. 2021;10(24):5913.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carod-Artal FJ. Post-COVID-19 syndrome: epidemiology, diagnostic criteria and pathogenic mechanisms involved. Rev Neurol. 2021;72(11):384–96.

CAS  PubMed  Google Scholar 

Raveendran AV, Jayadevan R, Sashidharan S. Long COVID: an overview. Diabetes Metab Syndr. 2021;15(3):869–75.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meo SA, et al. Magnetic Resonance Imaging (MRI) and neurological manifestations in SARS-CoV-2 patients. Eur Rev Med Pharmacol Sci. 2021;25(2):1101–8.

CAS  PubMed  Google Scholar 

Anjana NKN, et al. Manifestations and risk factors of post COVID syndrome among COVID-19 patients presented with minimal symptoms - A study from Kerala, India. J Family Med Prim Care. 2021;10(11):4023–9.

Article  PubMed  PubMed Central  Google Scholar 

Abdel-Gawad M. et al. Post-COVID-19 Syndrome Clinical Manifestations: A Systematic Review. Antiinflamm Antiallergy Agents Med Chem. 2022.

Taquet M, et al. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry. 2021;8(5):416–27.

Article  PubMed  PubMed Central  Google Scholar 

Taquet M, et al. Bidirectional associations between COVID-19 and psychiatric disorder: retrospective cohort studies of 62 354 COVID-19 cases in the USA. Lancet Psychiatry. 2021;8(2):130–40.

Article  PubMed  Google Scholar 

Taquet M, et al. Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: an analysis of 2-year retrospective cohort studies including 1 284 437 patients. Lancet Psychiatry. 2022;9(10):815–27.

Article  PubMed  PubMed Central  Google Scholar 

Perrottelli A, et al. Cognitive impairment after post-acute COVID-19 infection: a systematic review of the literature. J Pers Med. 2022;12(12):2070.

Article  PubMed  PubMed Central  Google Scholar 

Crivelli L, et al. Changes in cognitive functioning after COVID-19: a systematic review and meta-analysis. Alzheimers Dement. 2022;18(5):1047–66.

Article  CAS  PubMed  Google Scholar 

Premraj L, et al. Mid and long-term neurological and neuropsychiatric manifestations of post-COVID-19 syndrome: a meta-analysis. J Neurol Sci. 2022;434:120162.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dixon SJ, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dixon SJ, Stockwell BR. The hallmarks of ferroptosis. Ann Rev Cancer Biol. 2019;3:35–54.

Article  Google Scholar 

Chen X, et al. Characteristics and biomarkers of ferroptosis. Front Cell Dev Biol. 2021;9:637162.

Article  PubMed  PubMed Central  Google Scholar 

Agmon E, et al. Modeling the effects of lipid peroxidation during ferroptosis on membrane properties. Sci Rep. 2018;8(1):5155.

Article  PubMed  PubMed Central  Google Scholar 

Su L-J, et al. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev. 2019;2019:5080843.

Article  PubMed  PubMed Central  Google Scholar 

Sies H, et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol. 2022;23(7):499–515.

Article  CAS  PubMed  Google Scholar 

Checa J, Aran JM. Reactive oxygen species: drivers of physiological and pathological processes. J Inflamm Res. 2020;13:1057–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Winterbourn CC. Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol Lett. 1995;82:969–74.

Article  PubMed  Google Scholar 

Halliwell B, Gutteridge J. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. 1984;219(1):1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21(7):363–83.

Article  CAS  PubMed  Google Scholar 

Juan CA, et al. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int J Mol Sci. 2021;22(9):4642.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang W, et al. Chemistry and biology of ω-3 PUFA peroxidation-derived compounds. Prostaglandins Other Lipid Mediat. 2017;132:84–91.

Article  CAS  PubMed  Google Scholar 

Catalá A. Five decades with polyunsaturated fatty acids: chemical synthesis, enzymatic formation, lipid peroxidation and its biological effects. J Lipids. 2013;2013:710290.

Article  PubMed  PubMed Central  Google Scholar 

Wagner BA, Buettner GR, Burns CP. Free radical-mediated lipid peroxidation in cells: oxidizability is a function of cell lipid bis-allylic hydrogen content. Biochemistry. 1994;33(15):4449–53.

Article  CAS  PubMed  Google Scholar 

Bayr H. Reactive oxygen species. Crit Care Med. 2005;33(12):S498–501.

Article  Google Scholar 

Yin H, Xu L, Porter NA. Free radical lipid peroxidation: mechanisms and analysis. Chem Rev. 2011;111(10):5944–72.

Article  CAS  PubMed  Google Scholar 

Girotti AW. Mechanisms of lipid peroxidation. J Free Radic Biol Med. 1985;1(2):87–95.

Article  CAS  PubMed  Google Scholar 

Gaschler MM, Stockwell BR. Lipid peroxidation in cell death. Biochem Biophys Res Commun. 2017;482(3):419–25.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Halliwell B, Chirico S. Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr. 1993;57(5):715S–725S.

Article  CAS  PubMed  Google Scholar 

Niki E, et al. Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochem Biophys Res Commun. 2005;338(1):668–76.

Article  CAS  PubMed  Google Scholar 

Kühn H, Borchert A. Regulation of enzymatic lipid peroxidation: the interplay of peroxidizing and peroxide reducing enzymes1 1This article is part of a series of reviews on “Regulatory and Cytoprotective Aspects of Lipid Hydroperoxide Metabolism.” The full list of papers may be found on the homepage of the journal. Free Rad Biol Med. 2002;33(2):154–72.

Article  PubMed  Google Scholar 

Liang D, Minikes AM, Jiang X. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol Cell. 2022;82(12):2215–27.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee J-Y, et al. Lipid metabolism and ferroptosis. Biology. 2021;10(3):184.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Minotti G, Aust SD. The role of iron in oxygen radical mediated lipid peroxidation. Chem Biol Interact. 1989;71(1):1–19.

Article  CAS  PubMed  Google Scholar 

Cheng Z, Li Y. What is responsible for the initiating chemistry of iron-mediated lipid peroxidation: an update. Chem Rev. 2007;107(3):748–66.

Article  CAS  PubMed  Google Scholar 

Pamplona R. Membrane phospholipids, lipoxidative damage and molecular integrity: a causal role in aging and longevity. Biochim Biophys Acta. 2008;1777(10):1249–62.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif