Rapid HPLC method reveals dynamic shifts in coenzyme Q redox state

Journal home page for Journal of Biological ChemistryAuthor links open overlay panel, , , , Abstract

Ubiquinol or coenzyme Q (CoQ) is a lipid-soluble electron carrier in the respiratory chain and an electron acceptor for various enzymes in metabolic pathways that intersect at this cofactor hub in the mitochondrial inner membrane. The reduced form of CoQ is an antioxidant, which protects against lipid peroxidation. In this study, we have optimized a UV-detected HPLC method for CoQ analysis from biological materials, which involves a rapid single-step extraction into n-propanol followed by direct sample injection onto a column. Using this method, we have measured the oxidized, reduced and total CoQ pools, and monitored shifts in the CoQ redox status in response to cell culture conditions and bioenergetic perturbations. We find that hypoxia or sulfide exposure induces a reductive shift in the intracellular CoQ pool. The effect of hypoxia is however, rapidly reversed by exposure to ambient air. Interventions at different loci in the electron transport chain can induce sizeable redox shifts in the oxidative or reductive direction, depending on whether they are up- or downstream of complex III. We have also used this method to confirm that CoQ levels are higher and more reduced in murine heart versus brain. In summary, the availability of a convenient HPLC-based method described herein, will facilitate studies on CoQ redox dynamics in response to environmental, nutritional and endogenous alterations.

Abbreviations-The abbreviations used areETC

electron transport chain

SQOR

sulfide quinone oxidoreductase

© 2024 THE AUTHORS. Published by Elsevier Inc on behalf of American Society for Biochemistry and Molecular Biology.

留言 (0)

沒有登入
gif