The emerging role of CARM1 in cancer

Y. Chen et al., The role of histone methylation in the development of digestive cancers: a potential direction for cancer management. Signal. Transduct. Target. Ther. 5(1), 143 (2020)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Q. Wu et al., Protein arginine methylation: from enigmatic functions to therapeutic targeting. Nat. Rev. Drug Discov. 20(7), 509–530 (2021)

Article  CAS  PubMed  Google Scholar 

W. Jin et al., Unraveling the complexity of histone-arginine methyltransferase CARM1 in cancer: from underlying mechanisms to targeted therapeutics. Biochim. Biophys. Acta Rev. Cancer. 1878(4), 188916 (2023)

Article  CAS  PubMed  Google Scholar 

K. Wang et al., PHGDH arginine methylation by PRMT1 promotes serine synthesis and represents a therapeutic vulnerability in hepatocellular carcinoma. Nat. Commun. 14(1), 1011 (2023)

Article  CAS  PubMed  PubMed Central  Google Scholar 

M. Santos, J.W. Hwang, M.T. Bedford, CARM1 arginine methyltransferase as a therapeutic target for cancer. J. Biol. Chem. 299(9), 105124 (2023)

Article  CAS  PubMed  PubMed Central  Google Scholar 

S.K. Tewary, Y.G. Zheng, M.C. Ho, Protein arginine methyltransferases: insights into the enzyme structure and mechanism at the atomic level. Cell. Mol. Life Sci. 76(15), 2917–2932 (2019)

Article  CAS  PubMed  PubMed Central  Google Scholar 

N. Troffer-Charlier et al., Functional insights from structures of coactivator-associated arginine methyltransferase 1 domains. Embo j. 26(20), 4391–4401 (2007)

Article  CAS  PubMed  PubMed Central  Google Scholar 

L. Wang et al., CARM1 automethylation is controlled at the level of alternative splicing. Nucleic Acids Res. 41(14), 6870–6880 (2013)

Article  CAS  PubMed  PubMed Central  Google Scholar 

M.B. Davis et al., Expression and sub-cellular localization of an epigenetic regulator, co-activator arginine methyltransferase 1 (CARM1), is associated with specific breast cancer subtypes and ethnicity. Mol. Cancer. 12(1), 40 (2013)

Article  CAS  PubMed  PubMed Central  Google Scholar 

D. Shlensky et al., Differential CARM1 isoform expression in subcellular compartments and among malignant and benign breast tumors. PLoS One. 10(6), e0128143 (2015)

Article  PubMed  PubMed Central  Google Scholar 

M. Zheng et al., ESRP1 regulates alternative splicing of CARM1 to sensitize small cell lung cancer cells to chemotherapy by inhibiting TGF-β/Smad signaling. Aging (Albany NY). 13(3), 3554–3572 (2021)

Article  CAS  PubMed  Google Scholar 

N. Ohkura et al., Coactivator-associated arginine methyltransferase 1, CARM1, affects pre-mRNA splicing in an isoform-specific manner. J. Biol. Chem. 280(32), 28927–28935 (2005)

Article  CAS  PubMed  Google Scholar 

Q. Feng et al., Biochemical control of CARM1 enzymatic activity by phosphorylation. J. Biol. Chem. 284(52), 36167–36174 (2009)

Article  CAS  PubMed  PubMed Central  Google Scholar 

K. Higashimoto et al., Phosphorylation-mediated inactivation of coactivator-associated arginine methyltransferase 1. Proc. Natl. Acad. Sci. U S A 104(30), 12318–12323 (2007)

Article  CAS  PubMed  PubMed Central  Google Scholar 

S. Carascossa et al., CARM1 mediates the ligand-independent and tamoxifen-resistant activation of the estrogen receptor alpha by cAMP. Genes Dev. 24(7), 708–719 (2010)

Article  CAS  PubMed  PubMed Central  Google Scholar 

N.C. Chang et al., The Dystrophin Glycoprotein Complex regulates the epigenetic activation of muscle stem cell commitment. Cell. Stem Cell. 22(5), 755–768e6 (2018)

Article  CAS  PubMed  PubMed Central  Google Scholar 

S. Li et al., The overexpression of CARM1 promotes human Osteosarcoma Cell Proliferation through the pGSK3β/β-Catenin/cyclinD1 signaling pathway. Int. J. Biol. Sci. 13(8), 976–984 (2017)

Article  CAS  PubMed  PubMed Central  Google Scholar 

H.J. Shin et al., AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy. Nature. 534(7608), 553–557 (2016)

Article  CAS  PubMed  PubMed Central  Google Scholar 

P. Kuhn et al., Automethylation of CARM1 allows coupling of transcription and mRNA splicing. Nucleic Acids Res. 39(7), 2717–2726 (2011)

Article  CAS  PubMed  Google Scholar 

W.D. Cheung et al., O-linked beta-N-acetylglucosaminyltransferase substrate specificity is regulated by myosin phosphatase targeting and other interacting proteins. J. Biol. Chem. 283(49), 33935–33941 (2008)

Article  CAS  PubMed  PubMed Central  Google Scholar 

P. Charoensuksai et al., O-GlcNAcylation of co-activator-associated arginine methyltransferase 1 regulates its protein substrate specificity. Biochem. J. 466(3), 587–599 (2015)

Article  CAS  PubMed  Google Scholar 

K. Sakabe, G.W. Hart, O-GlcNAc transferase regulates mitotic chromatin dynamics. J. Biol. Chem. 285(45), 34460–34468 (2010)

Article  CAS  PubMed  PubMed Central  Google Scholar 

M. Yang et al., Structural basis for CoREST-dependent demethylation of nucleosomes by the human LSD1 histone demethylase. Mol. Cell. 23(3), 377–387 (2006)

Article  CAS  PubMed  Google Scholar 

M.A. Bennesch et al., LSD1 engages a corepressor complex for the activation of the estrogen receptor α by estrogen and cAMP. Nucleic Acids Res. 44(18), 8655–8670 (2016)

Article  CAS  PubMed  PubMed Central  Google Scholar 

J. Liu et al., Arginine methylation-dependent LSD1 stability promotes invasion and metastasis of breast cancer. EMBO Rep. 21(2), e48597 (2020)

Article  CAS  PubMed  Google Scholar 

D. Cheng et al., CARM1 methylates MED12 to regulate its RNA-binding ability. Life Sci. Alliance. 1(5), e201800117 (2018)

Article  PubMed  PubMed Central  Google Scholar 

W.W. Gao et al., JMJD6 licenses ERα-Dependent enhancer and coding gene activation by modulating the recruitment of the CARM1/MED12 co-activator complex. Mol. Cell. 70(2), 340–357e8 (2018)

Article  CAS  PubMed  PubMed Central  Google Scholar 

S.T. Williams et al., Studies on the catalytic domains of multiple JmjC oxygenases using peptide substrates. Epigenetics. 9(12), 1596–1603 (2014)

Article  PubMed  Google Scholar 

B.L. Peng et al., A hypermethylation strategy utilized by enhancer-bound CARM1 to promote estrogen receptor α-dependent transcriptional activation and breast carcinogenesis. Theranostics. 10(8), 3451–3473 (2020)

Article  CAS  PubMed  PubMed Central  Google Scholar 

H. Cheng et al., Overexpression of CARM1 in breast cancer is correlated with poorly characterized clinicopathologic parameters and molecular subtypes. Diagn. Pathol. 8, 129 (2013)

Article  PubMed  PubMed Central  Google Scholar 

N. Nakayama et al., Cancer-related transcription regulator protein NAC1 forms a protein complex with CARM1 for ovarian cancer progression. Oncotarget. 9(47), 28408–28420 (2018)

Article  PubMed  PubMed Central  Google Scholar 

S. Karakashev et al., CARM1-expressing ovarian cancer depends on the histone methyltransferase EZH2 activity. Nat. Commun. 9(1), 631 (2018)

Article  PubMed  PubMed Central  Google Scholar 

S. Leonard et al., Arginine methyltransferases are regulated by Epstein-Barr Virus in B cells and are differentially expressed in Hodgkin’s lymphoma. Pathogens. 1(1), 52–64 (2012)

Article  CAS  PubMed  PubMed Central  Google Scholar 

L.P. Vu et al., PRMT4 blocks myeloid differentiation by assembling a methyl-RUNX1-dependent repressor complex. Cell. Rep. 5(6), 1625–1638 (2013)

Article  CAS  PubMed  PubMed Central  Google Scholar 

X.Y. Zhong et al., CARM1 methylates GAPDH to regulate glucose metabolism and is suppressed in Liver Cancer. Cell. Rep. 24(12), 3207–3223 (2018)

Article  CAS  PubMed 

留言 (0)

沒有登入
gif