Systematic review of the osteogenic effect of rare earth nanomaterials and the underlying mechanisms

El-Rashidy AA, Roether JA, Harhaus L, Kneser U, Boccaccini AR. Regenerating bone with bioactive glass scaffolds: a review of in vivo studies in bone defect models. Acta Biomater. 2017;62:1–28.

Article  CAS  PubMed  Google Scholar 

Dai W, Leng X, Wang J, Cheng J, Hu X, Ao Y. Quadriceps tendon autograft versus bone-patellar tendon–bone and hamstring tendon autografts for anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med. 2022;50(12):3425–39.

Article  PubMed  Google Scholar 

Wang B, Feng C, Liu Y, Mi F, Dong J. Recent advances in biofunctional guided bone regeneration materials for repairing defective alveolar and maxillofacial bone: a review. Jpn Dent Sci Rev. 2022;58:233–48.

Article  PubMed  PubMed Central  Google Scholar 

Natarajan D, Ye Z, Wang L, Ge L, Pathak JL. Rare earth smart nanomaterials for bone tissue engineering and implantology: advances, challenges, and prospects. Bioeng Transl Med. 2022;7(1): e10262.

Article  CAS  PubMed  Google Scholar 

Gu M, Li W, Jiang L, Li X. Recent progress of rare earth doped hydroxyapatite nanoparticles: luminescence properties, synthesis and biomedical applications. Acta Biomater. 2022;148:22–43.

Article  CAS  PubMed  Google Scholar 

Meng J, Cui Y, Wang Y. Rare earth-doped nanocrystals for bioimaging in the near-infrared region. J Mater Chem B. 2022;10(42):8596–615.

Article  CAS  PubMed  Google Scholar 

Zhao PP, Ge YW, Liu XL, Ke QF, Zhang JW, Zhu ZA, et al. Ordered arrangement of hydrated GdPO4 nanorods in magnetic chitosan matrix promotes tumor photothermal therapy and bone regeneration against breast cancer bone metastases. Chem Eng J. 2020;381: 122694.

Article  CAS  Google Scholar 

Ge YW, Liu XL, Yu DG, Zhu ZA, Ke QF, Mao YQ, et al. Graphene-modified CePO4 nanorods effectively treat breast cancer-induced bone metastases and regulate macrophage polarization to improve osteo-inductive ability. J Nanobiotechnology. 2021;19(1):11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei F, Neal CJ, Sakthivel TS, Kean T, Seal S, Coathup MJ. Multi-functional cerium oxide nanoparticles regulate inflammation and enhance osteogenesis. Mater Sci Eng C. 2021;124: 112041.

Article  CAS  Google Scholar 

Cai Z, Guo Z, Yang C, Wang F, Zhang P, Wang Y, et al. Surface biofunctionalization of gadolinium phosphate nanobunches for boosting osteogenesis/chondrogenesis differentiation. Int J Mol Sci. 2023;24(3):2032.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ren N, Liang N, Yu X, Wang A, Xie J, Sun C. Ligand-free upconversion nanoparticles for cell labeling and their effects on stem cell differentiation. Nanotechnology. 2020;31(14): 145101.

Article  CAS  PubMed  Google Scholar 

Ren N, Feng Z, Liang N, Xie J, Wang A, Sun C, et al. NaGdF4: Yb/Er nanoparticles of different sizes for tracking mesenchymal stem cells and their effects on cell differentiation. Mater Sci Eng C. 2020;111: 110827.

Article  CAS  Google Scholar 

Vijayan V, Sreekumar S, Ahina KM, Lakra R, Kiran MS. Lanthanum oxide nanoparticles reinforced collagen ƙ-carrageenan hydroxyapatite biocomposite as angio-osteogenic biomaterial for in vivo osseointegration and bone repair. Adv Biol. 2023;7:2300039.

Article  CAS  Google Scholar 

Chu M, Sun Z, Fan Z, Yu D, Mao Y, Guo Y. Bi-directional regulation functions of lanthanum-substituted layered double hydroxide nanohybrid scaffolds via activating osteogenesis and inhibiting osteoclastogenesis for osteoporotic bone regeneration. Theranostics. 2021;11(14):6717–34.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bao S, Yu D, Tang Z, Wu H, Zhang H, Wang N, et al. Conformationally regulated “nanozyme-like” cerium oxide with multiple free radical scavenging activities for osteoimmunology modulation and vascularized osseointegration. Bioact Mater. 2024;34:64–79.

CAS  PubMed  Google Scholar 

Ren S, Zhou Y, Zheng K, Xu X, Yang J, Wang X, et al. Cerium oxide nanoparticles loaded nanofibrous membranes promote bone regeneration for periodontal tissue engineering. Bioact Mater. 2022;7:242–53.

CAS  PubMed  Google Scholar 

Li H, Xia P, Pan S, Qi Z, Fu C, Yu Z, et al. The advances of ceria nanoparticles for biomedical applications in orthopaedics. Int J Nanomedicine. 2020;15:7199–214.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu M, Shu M, Yan J, Liu X, Wang R, Hou Z, et al. Luminescent net-like inorganic scaffolds with europium-doped hydroxyapatite for enhanced bone reconstruction. Nanoscale. 2021;13(2):1181–94.

Article  CAS  PubMed  Google Scholar 

Peng XY, Hu M, Liao F, Yang F, Ke QF, Guo YP, et al. La-Doped mesoporous calcium silicate/chitosan scaffolds for bone tissue engineering. Biomater Sci. 2019;7(4):1565–73.

Article  CAS  PubMed  Google Scholar 

Zhu DY, Lu B, Yin JH, Ke QF, Xu H, Zhang CQ, et al. Gadolinium-doped bioglass scaffolds promote osteogenic differentiation of hBMSC via the Akt/GSK3β; pathway and facilitate bone repair in vivo. Int J Nanomedicine. 2019;14:1085–100.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yadav S, Chamoli S, Kumar P, Maurya PK. Structural and functional insights in polysaccharides coated cerium oxide nanoparticles and their potential biomedical applications: a review. Int J Biol Macromol. 2023;246: 125673.

Article  CAS  PubMed  Google Scholar 

Yang K, Cao W, Hao X, Xue X, Zhao J, Liu J, et al. Metallofullerene nanoparticles promote osteogenic differentiation of bone marrow stromal cells through BMP signaling pathway. Nanoscale. 2013;5(3):1205.

Article  CAS  PubMed  Google Scholar 

Wang Q, Tang Y, Ke Q, Yin W, Zhang C, Guo Y, et al. Magnetic lanthanum-doped hydroxyapatite/chitosan scaffolds with endogenous stem cell-recruiting and immunomodulatory properties for bone regeneration. J Mater Chem B. 2020;8(24):5280–92.

Article  CAS  PubMed  Google Scholar 

Patra CR, Bhattacharya R, Patra S, Vlahakis NE, Gabashvili A, Koltypin Y, et al. Pro-angiogenic properties of europium (III) hydroxide nanorods. Adv Mater. 2008;20(4):753–6.

Article  CAS  Google Scholar 

Pinna A, Torki Baghbaderani M, Vigil Hernández V, Naruphontjirakul P, Li S, McFarlane T, et al. Nanoceria provides antioxidant and osteogenic properties to mesoporous silica nanoparticles for osteoporosis treatment. Acta Biomater. 2021;122:365–76.

Article  CAS  PubMed  Google Scholar 

Miyawaki J, Matsumura S, Yuge R, Murakami T, Sato S, Tomida A, et al. Biodistribution and ultrastructural localization of single-walled carbon nanohorns determined in vivo with embedded Gd2O3 labels. ACS Nano. 2009;3(6):1399–406.

Article  CAS  PubMed  Google Scholar 

Singh S, Kumar A, Karakoti A, Seal S, Self WT. Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles. Mol Biosyst. 2010;6(10):1813.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dahle JT, Livi K, Arai Y. Effects of pH and phosphate on CeO2 nanoparticle dissolution. Chemosphere. 2015;119:1365–71.

Article  CAS  PubMed  Google Scholar 

Gao C, Jin Y, Jia G, Suo X, Liu H, Liu D, et al. Y2O3 nanoparticles caused bone tissue damage by breaking the intracellular phosphate balance in bone marrow stromal cells. ACS Nano. 2019;13(1):313–23.

Article  CAS  PubMed  Google Scholar 

Nikolova V, Kircheva N, Dobrev S, Angelova S, Dudev T. Lanthanides as calcium mimetic species in calcium-signaling/buffering proteins: the effect of lanthanide type on the Ca2+/Ln3+ competition. Int J Mol Sci. 2023;24(7):6297.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pałasz A, Czekaj P. Toxicological and cytophysiological aspects of lanthanides action. Acta Biochim Pol. 2000;47(4):1107–14.

Article  PubMed  Google Scholar 

Chandran L, Am B. Apatite matrix substituted with biologically essential rare earth elements as an artificial hard tissue substitute: systematic physicochemical and biological evaluation. J Biomed Mater Res A. 2021;109(6):821–8.

Article  CAS  PubMed  Google Scholar 

Yamaguchi T, Chattopadhyay N, Kifor O, Sanders JL, Brown EM. Activation of p42/44 and p38 mitogen-activated protein kinases by extracellular calcium-sensing receptor agonists induces mitogenic responses in the mouse osteoblastic MC3T3-E1 cell line. Biochem Biophys Res Commun. 2000;279(2):363–8.

Article  CAS  PubMed  Google Scholar 

Yang XC, Sachs F. Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science. 1989;243(4894):1068–71.

Article  CAS  PubMed  Google Scholar 

Mlinar B, Enyeart JJ. Block of current through T-type calcium channels by trivalent metal cations and nickel in neural rat and human cells. J Physiol. 1993;469(1):639–52.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif