Synergistic neuroprotective action of prolactin and 17β-estradiol on kainic acid-induced hippocampal injury and long-term memory deficit in ovariectomized rats

Pan Q, Guo K, Xue M, Tu Q (2020) Estrogen protects neuroblastoma cell from amyloid-β 42 (Aβ42)-induced apoptosis via TXNIP/TRX axis and AMPK signaling. Neurochem Int 135:104685. https://doi.org/10.1016/j.neuint.2020.104685

Article  CAS  PubMed  Google Scholar 

Finney CA, Shvetcov A, Westbrook RF et al (2020) The role of hippocampal estradiol in synaptic plasticity and memory: a systematic review. Front Neuroendocrinol 56:100818. https://doi.org/10.1016/j.yfrne.2019.100818

Article  CAS  PubMed  Google Scholar 

Pompili A, Iorio C, Gasbarri A (2020) Effects of sex steroid hormones on memory. Acta Neurobiol Exp (Wars) 80:117–128. https://doi.org/10.21307/ane-2020-012

Article  PubMed  Google Scholar 

Ortiz-Pérez A, Espinosa-Raya J, Picazo O (2016) An enriched environment and 17-beta estradiol produce similar pro-cognitive effects on ovariectomized rats. Cogn Process 17:15–25. https://doi.org/10.1007/s10339-015-0746-1

Article  PubMed  Google Scholar 

Koebele SV, Mennenga SE, Poisson ML et al (2020) Characterizing the effects of tonic 17β-estradiol administration on spatial learning and memory in the follicle-deplete middle-aged female rat. Horm Behav 126:104854. https://doi.org/10.1016/j.yhbeh.2020.104854

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carretero-Hernández M, Catalano-Iniesta L, Blanco EJ et al (2022) Highlights regarding prolactin in the dentate gyrus and hippocampus. pp 479–505

Taxier LR, Gross KS, Frick KM (2020) Oestradiol as a neuromodulator of learning and memory. Nat Rev Neurosci 21:535–550. https://doi.org/10.1038/s41583-020-0362-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yao S, Song J, Gao J et al (2018) Cognitive function and serum hormone levels are associated with gray matter volume decline in female patients with prolactinomas. Front Neurol 8. https://doi.org/10.3389/fneur.2017.00742

Moreno-Ruiz B, Mellado S, Zamora-Moratalla A et al (2021) Increase in serum prolactin levels in females improves the performance of spatial learning by promoting changes in the circuital dynamics of the hippocampus. Psychoneuroendocrinology 124. https://doi.org/10.1016/j.psyneuen.2020.105048

Leem YH, Park JS, Chang H et al (2019) Exercise prevents memory consolidation defects Via enhancing prolactin responsiveness of CA1 neurons in mice under chronic stress. Mol Neurobiol 56. https://doi.org/10.1007/s12035-019-1560-z

Torner L, Tinajero E, Lajud N et al (2013) Hyperprolactinemia impairs object recognition without altering spatial learning in male rats. Behav Brain Res 252:32–39. https://doi.org/10.1016/j.bbr.2013.05.031

Article  CAS  PubMed  Google Scholar 

Walker TL, Vukovic J, Koudijs MM et al (2012) Prolactin stimulates Precursor cells in the adult mouse Hippocampus. PLoS ONE 7:e44371. https://doi.org/10.1371/journal.pone.0044371

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reyes-Mendoza J, Morales T (2020) Prolactin treatment reduces kainic acid-induced gliosis in the hippocampus of ovariectomized female rats. Brain Res 1746:147014. https://doi.org/10.1016/j.brainres.2020.147014

Article  CAS  PubMed  Google Scholar 

Castanho TC, Moreira PS, Portugal-Nunes C et al (2014) The role of sex and sex-related hormones in cognition, mood and well-being in older men and women. Biol Psychol 103:158–166. https://doi.org/10.1016/j.biopsycho.2014.08.015

Article  PubMed  Google Scholar 

Montalvo I, Llorens M, Caparrós L et al (2018) Improvement in cognitive abilities following cabergoline treatment in patients with a prolactin-secreting pituitary adenoma. Int Clin Psychopharmacol 33:98–102. https://doi.org/10.1097/YIC.0000000000000199

Article  PubMed  Google Scholar 

Sihra TS, Flores G, Rodríguez-Moreno A (2014) Kainate receptors. Neuroscientist 20:29–43. https://doi.org/10.1177/1073858413478196

Article  CAS  PubMed  Google Scholar 

Tejadilla D, Cerbón M, Morales T (2010) Prolactin reduces the damaging effects of excitotoxicity in the dorsal hippocampus of the female rat independently of ovarian hormones. Neuroscience 169:1178–1185. https://doi.org/10.1016/j.neuroscience.2010.05.074

Article  CAS  PubMed  Google Scholar 

Bertaina-Anglade V, Enjuanes E, Morillon D, Drieu la Rochelle C (2006) The object recognition task in rats and mice: a simple and rapid model in safety pharmacology to detect amnesic properties of a new chemical entity. J Pharmacol Toxicol Methods 54:99–105. https://doi.org/10.1016/j.vascn.2006.04.001

Article  CAS  PubMed  Google Scholar 

Taglialatela G, Hogan D, Zhang W-R, Dineley KT (2009) Intermediate- and long-term recognition memory deficits in Tg2576 mice are reversed with acute calcineurin inhibition. Behav Brain Res 200:95–99. https://doi.org/10.1016/j.bbr.2008.12.034

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lueptow LM (2017) Novel object Recognition Test for the investigation of learning and memory in mice. J Visualized Experiments. https://doi.org/10.3791/55718

Article  Google Scholar 

George Paxinos and Charles Watson (1986) The Rat Brain In Stereotaxic Coordinates, Second Edition. Academic Press

Hasegawa Y, Hojo Y, Kojima H et al (2015) Estradiol rapidly modulates synaptic plasticity of hippocampal neurons: involvement of kinase networks. Brain Res 1621:147–161. https://doi.org/10.1016/j.brainres.2014.12.056

Article  CAS  PubMed  Google Scholar 

Rong W, Wang J, Liu X et al (2012) 17β-Estradiol attenuates neural cell apoptosis through inhibition of JNK Phosphorylation in SCI Rats and Excitotoxicity Induced by Glutamate in Vitro. Int J Neurosci 122:381–387. https://doi.org/10.3109/00207454.2012.668726

Article  CAS  PubMed  Google Scholar 

Rodriguez-Chavez V, Moran J, Molina-Salinas G et al (2021) Participation of glutamatergic ionotropic receptors in excitotoxicity: the neuroprotective role of Prolactin. Neuroscience 461:180–193. https://doi.org/10.1016/j.neuroscience.2021.02.027

Article  CAS  PubMed  Google Scholar 

Hojo Y, Munetomo A, Mukai H et al (2015) Estradiol rapidly modulates spinogenesis in hippocampal dentate gyrus: involvement of kinase networks. Horm Behav 74:149–156. https://doi.org/10.1016/j.yhbeh.2015.06.008

Article  CAS  PubMed  Google Scholar 

Tuscher JJ, Fortress AM, Kim J, Frick KM (2015) Regulation of object recognition and object placement by ovarian sex steroid hormones. Behav Brain Res 285:140–157. https://doi.org/10.1016/j.bbr.2014.08.001

Article  CAS  PubMed  Google Scholar 

Cabrera-Reyes EA, Vanoye–Carlo A, Rodríguez-Dorantes M et al (2019) Transcriptomic analysis reveals new hippocampal gene networks induced by prolactin. Sci Rep 9:13765. https://doi.org/10.1038/s41598-019-50228-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zamora-Moratalla A, Martín ED (2021) Prolactin enhances hippocampal synaptic plasticity in female mice of reproductive age. Hippocampus 31:281–293. https://doi.org/10.1002/hipo.23288

Article  CAS  PubMed  Google Scholar 

Love G, Torrey N, McNamara I et al (2005) Maternal experience produces long-lasting behavioral modifications in the rat. Behav Neurosci 119:1084–1096. https://doi.org/10.1037/0735-7044.119.4.1084

Article  PubMed  Google Scholar 

Pawluski JL, Walker SK, Galea LAM (2006) Reproductive experience differentially affects spatial reference and working memory performance in the mother. Horm Behav 49:143–149. https://doi.org/10.1016/j.yhbeh.2005.05.016

Article  PubMed  Google Scholar 

Bridges RS (2016) Long-term alterations in neural and endocrine processes induced by motherhood in mammals. Horm Behav 77. https://doi.org/10.1016/j.yhbeh.2015.09.001

Hussain D, Hoehne A, Woodside B, Brake WG (2013) Reproductive experience modifies the effects of estradiol on learning and memory bias in female rats. Horm Behav 63. https://doi.org/10.1016/j.yhbeh.2012.11.011

Flores-Vivaldo YM, Camacho‐Abrego I, Picazo O, Flores G (2019) Pregnancies alters spine number in cortical and subcortical limbic brain regions of old rats. Synapse 73:e22100. https://doi.org/10.1002/syn.22100

Article  CAS  PubMed  Google Scholar 

Cabrera-Pedraza VR, de Jesús Gómez-Villalobos M, de la Cruz F et al (2017) Pregnancy improves cognitive deficit and neuronal morphology atrophy in the prefrontal cortex and hippocampus of aging spontaneously hypertensive rats. Synapse 71:e21991. https://doi.org/10.1002/syn.21991

Article  CAS  PubMed  Google Scholar 

Duc Nguyen H, Pal Yu B, Hoang NHM et al (2022) Prolactin and its altered action in Alzheimer’s Disease and Parkinson’s Disease. Neuroendocrinology 112:427–445. https://doi.org/10.1159/000517798

Article  CAS  PubMed  Google Scholar 

Azcoitia I, Barreto GE, Garcia-Segura LM (2019) Molecular mechanisms and cellular events involved in the neuroprotective actions of estradiol. Analysis of sex differences. Front Neuroendocrinol 55:100787. https://doi.org/10.1016/j.yfrne.2019.100787

Article  CAS  PubMed  Google Scholar 

Lu Y, Sareddy GR, Wang J et al (2020) Neuron-derived estrogen is critical for astrocyte activation and neuroprotection of the ischemic brain. J Neurosci 40:7355–7374. https://doi.org/10.1523/JNEUROSCI.0115-20.2020

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duarte-Guterman P, Yagi S, Chow C, Galea LAM (2015) Hippocampal learning, memory, and neurogenesis: effects of sex and estrogens across the lifespan in adults. Horm Behav 74:37–52. https://doi.org/10.1016/j.yhbeh.2015.05.024

Article  CAS  PubMed  Google Scholar 

Chen Y, Guo W, Xu L et al (2016) 17 β -Estradiol promotes Schwann Cell Proliferation and differentiation, accelerating early remyelination in a mouse peripheral nerve Injury Model. Biomed Res Int 2016:1–13. https://doi.org/10.1155/2016/7891202

留言 (0)

沒有登入
gif