Hyperoxemia and hypoxemia impair cellular oxygenation: a study in healthy volunteers

de Jonge E, Peelen L, Keijzers PJ et al (2008) Association between administered oxygen, arterial partial oxygen pressure and mortality in mechanically ventilated intensive care unit patients. Crit Care 12(6):1–8. https://doi.org/10.1186/cc7150

Article  Google Scholar 

Eastwood G, Bellomo R, Bailey M et al (2012) Arterial oxygen tension and mortality in mechanically ventilated patients. Intensive Care Med 38(1):91–98. https://doi.org/10.1007/s00134-011-2419-6

Article  CAS  PubMed  Google Scholar 

Schjørring OL, Jensen AKG, Nielsen CG et al (2020) Arterial oxygen tensions in mechanically ventilated ICU patients and mortality: a retrospective, multicentre, observational cohort study. Br J Anaesth 124(4):420–429. https://doi.org/10.1016/j.bja.2019.12.039

Article  PubMed  Google Scholar 

Hochberg CH, Semler MW, Brower RG (2021) Oxygen toxicity in critically ill adults. Am J Respir Crit Care Med 204(6):632–641. https://doi.org/10.1164/rccm.202102-0417CI

Article  CAS  PubMed  PubMed Central  Google Scholar 

Palmer E, Post B, Klapaukh R et al (2019) The association between supraphysiologic arterial oxygen levels and mortality in critically ill patients a multicenter observational cohort study. Am J Respir Crit Care Med 200(11):1373–1380. https://doi.org/10.1164/rccm.201904-0849OC

Article  PubMed  PubMed Central  Google Scholar 

Singer M, Young PJ, Laffey JG et al (2021) Dangers of hyperoxia. Crit Care 25(1):1–15. https://doi.org/10.1186/s13054-021-03815-y

Article  Google Scholar 

Schumacker PT (2010) Is enough oxygen too much? Crit Care. https://doi.org/10.1186/cc9201

Article  PubMed  PubMed Central  Google Scholar 

Jones GAL, Peters MJ (2022) Towards causality with liberal oxygen use?∗. Pediatr Crit Care Med 23(2):135–137. https://doi.org/10.1097/PCC.0000000000002876

Article  PubMed  Google Scholar 

Cain SM (1965) Appearance of excess lactate in anesthetized dogs during anemic and hypoxic hypoxia. Am J Physiol 209(3):604–610. https://doi.org/10.1152/ajplegacy.1965.209.3.604

Article  CAS  PubMed  Google Scholar 

Bickler PE, Feiner JR, Lipnick MS, Batchelder P, Macleod DB, Severinghaus JW (2017) Effects of acute, profound hypoxia on healthy humans: implications for safety of tests evaluating pulse oximetry or tissue oximetry performance. Anesth Analg. https://doi.org/10.1213/ANE.0000000000001421

Article  PubMed  Google Scholar 

Hobler KE, Carey LC (1973) Effect of acute progressive hypoxemia on cardiac output and plasma excess lactate. Ann Surg. https://doi.org/10.1097/00000658-197302000-00013

Article  PubMed  PubMed Central  Google Scholar 

Schumacker PT, Samsel RW (1989) Analysis of oxygen delivery and uptake relationships in the Krogh tissue model. J Appl Physiol 67(3):1234–1244. https://doi.org/10.1152/jappl.1989.67.3.1234

Article  CAS  PubMed  Google Scholar 

Smit B, Smulders YM, van der Wouden JC, Oudemans-van Straaten HM, Spoelstra-de Man AME (2018) Hemodynamic effects of acute hyperoxia: systematic review and meta-analysis. Crit Care 22(1):1–10. https://doi.org/10.1186/s13054-018-1968-2

Article  Google Scholar 

Spoelstra-De Man AME, Smit B, Oudemans-Van Straaten HM, Smulders YM (2015) Cardiovascular effects of hyperoxia during and after cardiac surgery. Anaesthesia 70(11):1307–1319. https://doi.org/10.1111/anae.13218

Article  CAS  PubMed  Google Scholar 

Kiers HD, Pickkers P, Kox M (2022) Hypoxemia in the presence or absence of systemic in fl ammation does not increase blood lactate levels in healthy volunteers. J Crit Care 71:154116. https://doi.org/10.1016/j.jcrc.2022.154116

Article  CAS  PubMed  Google Scholar 

Römers LHL, Bakker C, Dollée N et al (2016) Cutaneous mitochondrial Po2, but not tissue oxygen saturation, is an early indicator of the physiologic limit of hemodilution in the pig. Anesthesiology. https://doi.org/10.1097/ALN.0000000000001156

Article  PubMed  Google Scholar 

Ince C, Mik EG (2016) Microcirculatory and mitochondrial hypoxia in sepsis, shock, and resuscitation. J Appl Physiol. https://doi.org/10.1152/japplphysiol.00298.2015

Article  PubMed  Google Scholar 

Neu C, Baumbach P, Plooij AK et al (2020) Non-invasive assessment of mitochondrial oxygen metabolism in the critically ill patient using the protoporphyrin IX-triplet state lifetime technique—a feasibility study. Front Immunol 11(May):1–9. https://doi.org/10.3389/fimmu.2020.00757

Article  CAS  Google Scholar 

Baumbach P, Neu C, Derlien S et al (2019) A pilot study of exercise-induced changes in mitochondrial oxygen metabolism measured by a cellular oxygen metabolism monitor (PICOMET). Biochim Biophys Acta Mol Basis Dis 1865(4):749–758. https://doi.org/10.1016/j.bbadis.2018.12.003

Article  CAS  PubMed  Google Scholar 

Baumbach P, Schmidt-Winter C, Hoefer J et al (2020) A pilot study on the association of mitochondrial oxygen metabolism and gas exchange during cardiopulmonary exercise testing: is there a mitochondrial threshold? Front Med. https://doi.org/10.3389/fmed.2020.585462

Article  Google Scholar 

Harms FA, Ubbink R, de Wijs CJ, Ligtenberg MP, ter Horst M, Mik EG (2022) Mitochondrial oxygenation during cardiopulmonary bypass: a pilot study. Front Med 9:1–13. https://doi.org/10.3389/fmed.2022.785734

Article  Google Scholar 

Wefers Bettink MA, Harms FA, Dollee N et al (2020) Non-invasive versus ex vivo measurement of mitochondrial function in an endotoxemia model in rat: toward monitoring of mitochondrial therapy. Mitochondrion. https://doi.org/10.1016/j.mito.2019.11.003

Article  PubMed  Google Scholar 

Harms FA, Voorbeijtel WJ, Bodmer SIA, Raat NJH, Mik EG (2013) Cutaneous respirometry by dynamic measurement of mitochondrial oxygen tension for monitoring mitochondrial function in vivo. Mitochondrion 13(5):507–514. https://doi.org/10.1016/j.mito.2012.10.005

Article  CAS  PubMed  Google Scholar 

Ubbink R, Bettink MAW, Janse R et al (2017) A monitor for cellular oxygen METabolism (COMET): monitoring tissue oxygenation at the mitochondrial level. J Clin Monit Comput 31(6):1143–1150. https://doi.org/10.1007/s10877-016-9966-x

Article  PubMed  Google Scholar 

Broch O, Renner J, Gruenewald M et al (2012) A comparison of the Nexfin ® and transcardiopulmonary thermodilution to estimate cardiac output during coronary artery surgery. Anaesthesia 67(4):377–383. https://doi.org/10.1111/j.1365-2044.2011.07018.x

Article  CAS  PubMed  Google Scholar 

Coppel J, Bountziouka V, Martin D, Gilbert-Kawai E (2021) A comparison of the quality of image acquisition between two different sidestream dark field video-microscopes. J Clin Monit Comput 35(3):577–583. https://doi.org/10.1007/s10877-020-00514-x

Article  PubMed  Google Scholar 

Harms F, Stolker RJ, Mik E (2016) Cutaneous respirometry as novel technique to monitor mitochondrial function: a feasibility study in healthy volunteers. PLoS ONE 11(7):1–11. https://doi.org/10.1371/journal.pone.0159544

Article  CAS  Google Scholar 

Ameloot K, Van De Vijver K, Broch O et al (2013) Nexfin noninvasive continuous hemodynamic monitoring: Validation against continuous pulse contour and intermittent transpulmonary thermodilution derived cardiac output in critically ill patients. Sci World J 2013:1. https://doi.org/10.1155/2013/519080

Article  CAS  Google Scholar 

Stolmeijer R, Van Ieperen E, Lameijer H, Van Beest P, Ter Maaten JC, Ter Avest E (2022) Haemodynamic effects of a 10-min treatment with a high inspired oxygen concentration in the emergency department: a prospective observational study. BMJ Open 12(9):1–8. https://doi.org/10.1136/bmjopen-2021-059848

Article  Google Scholar 

Smit B, Smulders YM, Eringa EC et al (2018) Hyperoxia does not affect oxygen delivery in healthy volunteers while causing a decrease in sublingual perfusion. Microcirculation 25(2):1–8. https://doi.org/10.1111/micc.12433

Article  CAS  Google Scholar 

Dobbe JGG, Streekstra GJ, Atasever B, van Zijderveld R, Ince C (2008) Measurement of functional microcirculatory geometry and velocity distributions using automated image analysis. Med Biol Eng Comput 46(7):659–670. https://doi.org/10.1007/s11517-008-0349-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hilderink BN, Crane RF, Baysan M et al (2023) A simulation of skin mitochondrial PO2 in circulatory shock. J Appl Physiol 134:1165–1176. https://doi.org/10.1152/japplphysiol.00621.2022

Article  CAS  PubMed  Google Scholar 

Mik EG, Van Leeuwen TG, Raat NJ, Ince C (2004) Quantitative determination of localized tissue oxygen concentration in vivo by two-photon excitation phosphorescence lifetime measurements. J Appl Physiol. https://doi.org/10.1152/japplphysiol.01399.2003

Article  PubMed  Google Scholar 

Mik EG, Johannes T, Zuurbier CJ et al (2008) In vivo mitochondrial oxygen tension measured by a delayed fluorescence lifetime technique. Biophys J. https://doi.org/10.1529/biophysj.107.126094

Article  PubMed  PubMed Central  Google Scholar 

Sharan M, Gupta S, Popel AS (1998) Parametric analysis of the relationship between end-capillary and mean tissue PO2as predicted by a mathematical model. J Theor Biol 195(4):439–449. https://doi.org/10.1006/jtbi.1998.0805

Article  CAS  PubMed  Google Scholar 

Bickler PE, Feiner JR, Lipnick MS, Batchelder P, MacLeod DB, Severinghaus JW (2017) Effects of acute, profound hypoxia on healthy humans. Anesth Analg.

留言 (0)

沒有登入
gif