Therapeutic Effect of Schwann Cell-Like Cells Differentiated from Human Tonsil-Derived Mesenchymal Stem Cells on Diabetic Neuropathy in db/db Mice

Williams R, Karuranga S, Malanda B, Saeedi P, Basit A, Besançon S, et al. Global and regional estimates and projections of diabetes-related health expenditure: results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Research and Clinical Practice. 2020;162:108072.

Sempere-Bigorra M, Julián-Rochina I, Cauli O. Differences and similarities in neuropathy in type 1 and 2 diabetes: a systematic review. J Pers Med. 2021;11:230.

Article  PubMed  PubMed Central  Google Scholar 

Allen MD, Choi IH, Kimpinski K, Doherty TJ, Rice CL. Motor unit loss and weakness in association with diabetic neuropathy in humans. Muscle Nerve. 2013;48:298–300.

Article  PubMed  Google Scholar 

Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett DL, et al. Diabetic neuropathy. Nat Rev Dis Primers. 2019;5:41.

Article  PubMed  Google Scholar 

Zakin E, Abrams R, Simpson DM. Diabetic neuropathy. Semin Neurol. 2019;39:560–9.

Article  PubMed  Google Scholar 

Aziz N, Dash B, Wal P, Kumari P, Joshi P, Wal A. New horizons in diabetic neuropathies: an updated review on their pathology, diagnosis, mechanism, screening techniques, pharmacological, and future approaches. Curr Diabetes Rev. 2024;20:e201023222416.

Article  Google Scholar 

Tesfaye S, Kempler P. Painful diabetic neuropathy. Diabetologia. 2005;48:805–7.

Article  CAS  PubMed  Google Scholar 

Eaton SE, Harris ND, Ibrahim S, Patel KA, Selmi F, Radatz M, et al. Increased sural nerve epineurial blood flow in human subjects with painful diabetic neuropathy. Diabetologia. 2003;46:934–9.

Article  CAS  PubMed  Google Scholar 

Gandhi RA, Marques JL, Selvarajah D, Emery CJ, Tesfaye S. Painful diabetic neuropathy is associated with greater autonomic dysfunction than painless diabetic neuropathy. Diabetes Care. 2010;33:1585–90.

Article  PubMed  PubMed Central  Google Scholar 

Oyibo SO, Prasad YD, Jackson NJ, Jude EB, Boulton AJ. The relationship between blood glucose excursions and painful diabetic peripheral neuropathy: a pilot study. Diabet Med. 2002;19:870–3.

Article  CAS  PubMed  Google Scholar 

Selvarajah D, Wilkinson ID, Gandhi R, Griffiths PD, Tesfaye S. Microvascular perfusion abnormalities of the thalamus in painful but not painless diabetic polyneuropathy: a clue to the pathogenesis of pain in type 1 diabetes. Diabetes Care. 2011;34:718–20.

Article  PubMed  PubMed Central  Google Scholar 

Sorensen L, Molyneaux L, Yue DK. The relationship among pain, sensory loss, and small nerve fibers in diabetes. Diabetes Care. 2006;29:883–7.

Article  PubMed  Google Scholar 

Schreiber AK, Nones CF, Reis RC, Chichorro JG, Cunha JM. Diabetic neuropathic pain: physiopathology and treatment. World J Diabetes. 2015;6:432–44.

Article  PubMed  PubMed Central  Google Scholar 

Yorek M. Treatment for diabetic peripheral neuropathy: What have we learned from animal models? Curr Diabetes Rev. 2022;18:e040521193121.

Article  CAS  PubMed  Google Scholar 

Kobayashi M, Zochodne DW. Diabetic neuropathy and the sensory neuron: new aspects of pathogenesis and their treatment implications. J Diabetes Investig. 2018;9:1239–54.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akkus G, Sert M. Diabetic foot ulcers: a devastating complication of diabetes mellitus continues non-stop in spite of new medical treatment modalities. World J Diabetes. 2022;13:1106–21.

Article  PubMed  PubMed Central  Google Scholar 

Elafros MA, Kvalsund MP, Callaghan BC. The global burden of polyneuropathy-in need of an accurate assessment. JAMA Neurol. 2022;79:537–8.

Article  PubMed  PubMed Central  Google Scholar 

Boulton AJM, Kempler P, Ametov A, Ziegler D. Whither pathogenetic treatments for diabetic polyneuropathy? Diabetes Metab Res Rev. 2013;29:327–33.

Article  CAS  PubMed  Google Scholar 

Akter S, Choubey M, Mohib MM, Arbee S, Sagor MAT, Mohiuddin MS. Stem cell therapy in diabetic polyneuropathy: recent advancements and future directions. Brain Sci. 2023;13:255.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Naruse K. Schwann cells as crucial players in diabetic neuropathy. In: Sango K, Yamauchi J, Ogata T, Susuki K, editors. Myelin: Basic and clinical advances. Singapore: Springer Singapore; 2019. p. 345–56.

Chapter  Google Scholar 

Okawa T, Kamiya H, Himeno T, Kato J, Seino Y, Fujiya A, et al. Treatment of neural crest-like cells derived from induced pluripotent stem cells improves diabetic polyneuropathy in mice. Cell Transplant. 2013;22:1767–83.

Article  PubMed  Google Scholar 

Majd H, Amin S, Ghazizadeh Z, Cesiulis A, Arroyo E, Lankford K, Majd A, et al. Deriving Schwann cells from hPSCs enables disease modeling and drug discovery for diabetic peripheral neuropathy. Cell Stem Cell. 2023;30:632-47.e10.

Article  CAS  PubMed  Google Scholar 

De Gregorio C, Contador D, Díaz D, Cárcamo C, Santapau D, Lobos-Gonzalez L, et al. Human adipose-derived mesenchymal stem cell-conditioned medium ameliorates polyneuropathy and foot ulceration in diabetic BKS db/db mice. Stem Cell Res Ther. 2020;11:168.

Article  PubMed  PubMed Central  Google Scholar 

Zhang Z, Liu Y, Zhou J. Neuritin promotes bone marrow-derived mesenchymal stem cell migration to treat diabetic peripheral neuropathy. Mol Neurobiol. 2022;59:6666–83.

Article  CAS  PubMed  Google Scholar 

Margiana R, Markov A, Zekiy AO, Hamza MU, Al-Dabbagh KA, Al-Zubaidi SH, et al. Clinical application of mesenchymal stem cell in regenerative medicine: a narrative review. Stem Cell Res Ther. 2022;13:366.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abbaszadeh H, Ghorbani F, Derakhshani M, Movassaghpour AA, Yousefi M, Talebi M, Shamsasenjan K. Regenerative potential of wharton’s jelly-derived mesenchymal stem cells: a new horizon of stem cell therapy. J Cell Physiol. 2020;235:9230–40.

Article  CAS  PubMed  Google Scholar 

Ryu KH, Cho KA, Park HS, Kim JY, Woo SY, Jo I, et al. Tonsil-derived mesenchymal stromal cells: evaluation of biologic, immunologic and genetic factors for successful banking. Cytotherapy. 2012;14:1193–202.

Article  CAS  PubMed  Google Scholar 

Lee HJ, Kim YH, Choi DW, Cho KA, Park JW, Shin SJ, et al. Tonsil-derived mesenchymal stem cells enhance allogeneic bone marrow engraftment via collagen iv degradation. Stem Cell Res Ther. 2021;12:329.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi JS, Lee BJ, Park HY, Song JS, Shin SC, Lee JC, et al. Effects of donor age, long-term passage culture, and cryopreservation on tonsil-derived mesenchymal stem cells. Cell Physiol Biochem. 2015;36:85–99.

Article  CAS  PubMed  Google Scholar 

Oh SY, Choi YM, Kim HY, Park YS, Jung SC, Park JW, et al. Application of tonsil-derived mesenchymal stem cells in tissue regeneration: concise review. Stem Cells. 2019;37:1252–60.

Jung N, Park S, Choi Y, Park JW, Hong YB, Park HH, et al. Tonsil-derived mesenchymal stem cells differentiate into a schwann cell phenotype and promote peripheral nerve regeneration. Int J Mol Sci. 2016;17:1867.

Article  PubMed  PubMed Central  Google Scholar 

Park S, Jung N, Myung S, Choi Y, Chung KW, Choi BO, Jung SC. Differentiation of human tonsil-derived mesenchymal stem cells into schwann-like cells improves neuromuscular function in a mouse model of charcot-marie-tooth disease type 1a. Int J Mol Sci. 2018;19:2393.

Article  PubMed  PubMed Central  Google Scholar 

Bosch-Queralt M, Fledrich R, Stassart RM. Schwann cell functions in peripheral nerve development and repair. Neurobiol Dis. 2023;176:105952.

Article  CAS  PubMed  Google Scholar 

Li J, Guan R, Pan L. Mechanism of schwann cells in diabetic peripheral neuropathy: a review. Medicine (Baltimore). 2023;102:e32653.

Article  PubMed  Google Scholar 

Nam YH, Park S, Yum Y, Jeong S, Park HE, Kim HJ, et al. Preclinical efficacy of peripheral nerve regeneration by schwann cell-like cells differentiated from human tonsil-derived mesenchymal stem cells in c22 mice. Biomedicines. 2023;11:3334.

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Gregorio C, Contador D, Campero M, Ezquer M, Ezquer F. Characterization of diabetic neuropathy progression in a mouse model of type 2 diabetes mellitus. Biol Open. 2018;7:bio036830.

Article  PubMed  PubMed Central  Google Scholar 

Shi TJ, Zhang MD, Zeberg H, Nilsson J, Grünler J, Liu SX, et al. Coenzyme q10 prevents peripheral neuropathy and attenuates neuron loss in the db−/db− mouse, a type 2 diabetes model. Proc Natl Acad Sci U S A. 2013;110:690–5.

Article  CAS  PubMed  Google Scholar 

Lee SM, Bressler R. Prevention of diabetic nephropathy by diet control in the db/db mouse. Diabetes. 1981;30:106–11.

Article  CAS  PubMed  Google Scholar 

Wald C, Wu C. Of mice and women: the bias in animal models. Science. 2010;327:1571–2.

留言 (0)

沒有登入
gif