Structure of the native γ-tubulin ring complex capping spindle microtubules

Akhmanova, A. & Steinmetz, M. O. Control of microtubule organization and dynamics: two ends in the limelight. Nat. Rev. Mol. Cell Biol. 16, 711–726 (2015).

Article  CAS  PubMed  Google Scholar 

Brouhard, G. J. & Rice, L. M. Microtubule dynamics: an interplay of biochemistry and mechanics. Nat. Rev. Mol. Cell Biol. 19, 451–463 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Voter, W. A. & Erickson, H. P. The kinetics of microtubule assembly. Evidence for a two-stage nucleation mechanism. J. Biol. Chem. 259, 10430–10438 (1984).

Article  CAS  PubMed  Google Scholar 

Kuchnir Fygenson, D., Flyvbjerg, H., Sneppen, K., Libchaber, A. & Leibler, S. Spontaneous nucleation of microtubules. Phys. Rev. E 51, 5058–5063 (1995).

Article  CAS  Google Scholar 

Roostalu, J. & Surrey, T. Microtubule nucleation: beyond the template. Nat. Rev. Mol. Cell Biol. 18, 702–710 (2017).

Article  CAS  PubMed  Google Scholar 

Zheng, Y., Wong, M. L., Alberts, B. & Mitchison, T. Nucleation of microtubule assembly by a gamma-tubulin-containing ring complex. Nature 378, 578–583 (1995).

Article  CAS  PubMed  Google Scholar 

Thawani, A. & Petry, S. Molecular insight into how gamma-TuRC makes microtubules. J. Cell Sci. https://doi.org/10.1242/jcs.245464 (2021).

Liu, P., Wurtz, M., Zupa, E., Pfeffer, S. & Schiebel, E. Microtubule nucleation: the waltz between gamma-tubulin ring complex and associated proteins. Curr. Opin. Cell Biol. 68, 124–131 (2021).

Article  CAS  PubMed  Google Scholar 

Paz, J. & Luders, J. Microtubule-organizing centers: towards a minimal parts list. Trends Cell Biol. 28, 176–187 (2018).

Article  CAS  PubMed  Google Scholar 

Liu, P. et al. Insights into the assembly and activation of the microtubule nucleator gamma-TuRC. Nature 578, 467–471 (2020).

Article  CAS  PubMed  Google Scholar 

Wieczorek, M. et al. Asymmetric molecular architecture of the human gamma-tubulin ring complex. Cell 180, 165–175 e116 (2020).

Article  CAS  PubMed  Google Scholar 

Consolati, T. et al. Microtubule nucleation properties of single human gammaTuRCs explained by their cryo-EM structure. Dev. Cell 53, 603–617 e608 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wieczorek, M. et al. Biochemical reconstitutions reveal principles of human gamma-TuRC assembly and function. J. Cell Biol. https://doi.org/10.1083/jcb.202009146 (2021).

Wurtz, M. et al. Reconstitution of the recombinant human gamma-tubulin ring complex. Open Biol. 11, 200325 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Zimmermann, F. et al. Assembly of the asymmetric human gamma-tubulin ring complex by RUVBL1-RUVBL2 AAA ATPase. Sci. Adv. 6, 1–20 (2020).

Article  Google Scholar 

Kollman, J. M., Polka, J. K., Zelter, A., Davis, T. N. & Agard, D. A. Microtubule nucleating gamma-TuSC assembles structures with 13-fold microtubule-like symmetry. Nature 466, 879–882 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kollman, J. M. et al. Ring closure activates yeast gammaTuRC for species-specific microtubule nucleation. Nat. Struct. Mol. Biol. 22, 132–137 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brilot, A. F. et al. CM1-driven assembly and activation of yeast gamma-tubulin small complex underlies microtubule nucleation. eLife 10, 1–35 (2021).

Article  Google Scholar 

Zupa, E. et al. The cryo-EM structure of a gamma-TuSC elucidates architecture and regulation of minimal microtubule nucleation systems. Nat. Commun. 11, 5705 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lyon, A. S. et al. Higher-order oligomerization of Spc110p drives gamma-tubulin ring complex assembly. Mol. Biol. Cell 27, 2245–2258 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Lin, T. C. et al. Cell-cycle dependent phosphorylation of yeast pericentrin regulates gamma-TuSC-mediated microtubule nucleation. eLife 3, e02208 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Leong, S. L. et al. Reconstitution of microtubule nucleation in vitro reveals novel roles for Mzt1. Curr. Biol. 29, 2199–2207 e2110 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Knop, M. & Schiebel, E. Receptors determine the cellular localization of a gamma-tubulin complex and thereby the site of microtubule formation. EMBO J. 17, 3952–3967 (1998).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wieczorek, M., Bechstedt, S., Chaaban, S. & Brouhard, G. J. Microtubule-associated proteins control the kinetics of microtubule nucleation. Nat. Cell Biol. 17, 907–916 (2015).

Article  CAS  PubMed  Google Scholar 

Thawani, A. et al. The transition state and regulation of gamma-TuRC-mediated microtubule nucleation revealed by single molecule microscopy. eLife 9, 1–34 (2020).

Article  Google Scholar 

Thawani, A., Kadzik, R. S. & Petry, S. XMAP215 is a microtubule nucleation factor that functions synergistically with the gamma-tubulin ring complex. Nat. Cell Biol. 20, 575–585 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ali, A., Vineethakumari, C., Lacasa, C. & Luders, J. Microtubule nucleation and gammaTuRC centrosome localization in interphase cells require ch-TOG. Nat. Commun. 14, 289 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bullitt, E., Rout, M. P., Kilmartin, J. V. & Akey, C. W. The yeast spindle pole body is assembled around a central crystal of Spc42p. Cell 89, 1077–1086 (1997).

Article  CAS  PubMed  Google Scholar 

Rout, M. P. & Kilmartin, J. V. Components of the yeast spindle and spindle pole body. J. Cell Biol. 111, 1913–1927 (1990).

Article  CAS  PubMed  Google Scholar 

Winey, M. et al. Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. J. Cell Biol. 129, 1601–1615 (1995).

Article  CAS  PubMed  Google Scholar 

Zupa, E., Liu, P., Wurtz, M., Schiebel, E. & Pfeffer, S. The structure of the gamma-TuRC: a 25-years-old molecular puzzle. Curr. Opin. Struct. Biol. 66, 15–21 (2021).

Article  CAS  PubMed  Google Scholar 

Howes, S. C. et al. Structural differences between yeast and mammalian microtubules revealed by cryo-EM. J. Cell Biol. 216, 2669–2677 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khodjakov, A. & Rieder, C. L. The sudden recruitment of gamma-tubulin to the centrosome at the onset of mitosis and its dynamic exchange throughout the cell cycle, do not require microtubules. J. Cell Biol. 146, 585–596 (1999).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aldaz, H., Rice, L. M., Stearns, T. & Agard, D. A. Insights into microtubule nucleation from the crystal structure of human gamma-tubulin. Nature 435, 523–527 (2005).

Article  CAS  PubMed  Google Scholar 

Kilmartin, J. V. Purification of yeast tubulin by self-assembly in vitro. Biochemistry 20, 3629–3633 (1981).

Article  CAS  PubMed  Google Scholar 

Zahm, J. A., Stewart, M. G., Carrier, J. S., Harrison, S. C. & Miller, M. P. Structural basis of Stu2 recruitment to yeast kinetochores. eLife https://doi.org/10.7554/eLife.65389 (2021).

Wang, P. J. & Huffaker, T. C. Stu2p: a microtubule-binding protein that is an essential component of the yeast spindle pole body. J. Cell Biol. 139, 1271–1280 (1997).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haase, K. P. et al. Stu2 uses a 15-nm parallel coiled coil for kinetochore localization and concomitant regulation of the mitotic spindle. Mol. Biol. Cell 29, 285–294 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ayaz, P. et al. A tethered delivery mechanism explains the catalytic action of a microtubule polymerase. eLife 3, e03069 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Ayaz, P., Ye, X., Huddleston, P., Brautigam, C. A. & Rice, L. M. A. TOG:alphabeta-tubulin complex structure reveals conformation-based mechanisms for a microtubule polymerase. Science

留言 (0)

沒有登入
gif