Ambudkar SV, Gottesman MM, editors. ABC Transporters: Biomedical, Cellular, and Molecular Aspects, Methods in Enzymology, vol. 292. San Diego (CA): Academic Press; 1998.
Al-Absi HR, Refaee MA, Rehman AU, Islam MT, Belhaouari SB, Alam T. Risk factors and comorbidities associated to cardiovascular disease in qatar: a machine learning based case-control study. IEEE Access. 2021;9:29929–41.
Vermaas JV, Sedova A, Baker MB, Boehm S, Rogers DM, Larkin J, Glaser J, Smith MD, Hernandez O, Smith JC. Supercomputing pipelines search for therapeutics against covid-19. Comput Sci Eng. 2020;23(1):7–16.
Peska L, Buza K, Koller J. Drug-target interaction prediction: a Bayesian ranking approach. Comput Methods Programs Biomed. 2017;152:15–21.
Yamanishi Y, Araki M, Gutteridge A, Honda W, Kanehisa M. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics. 2008;24(13):i232–40.
Speck-Planche A, Kleandrova VV, Luan F, Cordeiro MND. A ligand-based approach for the in silico discovery of multi-target inhibitors for proteins associated with HIV infection. Mol Biosyst. 2012;8(8):2188–96.
Yang Y, Zhu Z, Wang X, Zhang X, Mu K, Shi Y, Peng C, Xu Z, Zhu W. Ligand-based approach for predicting drug targets and for virtual screening against covid-19. Briefings Bioinform. 2021;22(2):1053–64.
Aziz F, Cardoso VR, Bravo-Merodio L, Russ D, Pendleton SC, Williams JA, Acharjee A, Gkoutos GV. Multimorbidity prediction using link prediction. Sci Rep. 2021;11(1):16392.
Valentin JP, Guillon JM, Jenkinson S, Kadambi V, Ravikumar P, Roberts S, Rosenbrier-Ribeiro L, Schmidt F, Armstrong D. In vitro secondary pharmacological profiling: an iq-drusafe industry survey on current practices. J Pharmacol Toxicol Methods. 2018;93:7–14.
da Silva Rocha SF, Olanda CG, Fokoue HH, Sant’Anna CM. Virtual screening techniques in drug discovery: review and recent applications. Curr Top Med Chem. 2019;19(19):1751–67.
Mousavian Z, Masoudi-Nejad A. Drug-target interaction prediction via chemogenomic space: learning-based methods. Expert Opin Drug Metab Toxicol. 2014;10(9):1273–87.
Li J, Zheng S, Chen B, Butte AJ, Swamidass SJ, Lu Z. A survey of current trends in computational drug repositioning. Brief Bioinform. 2016;17(1):2–12.
Chen R, Liu X, Jin S, Lin J, Liu J. Machine learning for drug-target interaction prediction. Molecules. 2018;23(9):2208.
Zhang W, Lin W, Zhang D, Wang S, Shi J, Niu Y. Recent advances in the machine learning-based drug-target interaction prediction. Curr Drug Metabol. 2019;20(3):194–202.
Bagherian M, Sabeti E, Wang K, Sartor MA, Nikolovska-Coleska Z, Najarian K. Machine learning approaches and databases for prediction of drug-target interaction: a survey paper. Brief Bioinform. 2021;22(1):247–69.
Stokes JM, Yang K, Swanson K, Jin W, Cubillos-Ruiz A, Donghia NM, MacNair CR, French S, Carfrae LA, Bloom-Ackermann Z, et al. A deep learning approach to antibiotic discovery. Cell. 2020;180(4):688–702.
Thafar MA, Alshahrani M, Albaradei S, Gojobori T, Essack M, Gao X. Affinity2vec: drug-target binding affinity prediction through representation learning, graph mining, and machine learning. Sci Rep. 2022;12(1):4751.
Honda S, Shi S, Ueda H.R. Smiles transformer: Pre-trained molecular fingerprint for low data drug discovery. arXiv preprint arXiv:1911.04738 2019.
Wang YB, You ZH, Yang S, Yi HC, Chen ZH, Zheng K. A deep learning-based method for drug-target interaction prediction based on long short-term memory neural network. BMC Med Inform Decis Mak. 2020;20(2):1–9.
Zhao ZY, Huang WZ, Zhan XK, Pan J, Huang YA, Zhang SW, Yu CQ et al. An ensemble learning-based method for inferring drug-target interactions combining protein sequences and drug fingerprints. BioMed Res Int. 2021;2021.
Zhao Z, Bourne PE. Harnessing systematic protein–ligand interaction fingerprints for drug discovery. Drug Discov Today. 2022;27(10):103319.
Shao J, Gong Q, Yin Z, Yin Z, Pan W, Pandiyan S, Wang L. S2dv: converting smiles to a drug vector for predicting the activity of anti-hbv small molecules. Brief Bioinform. 2022;23(2):bbab593.
Kurata H, Tsukiyama S, Manavalan B. iacvp: markedly enhanced identification of anti-coronavirus peptides using a dataset-specific word2vec model. Brief Bioinform. 2022;23(4):bbac265.
Lim J, Ryu S, Kim JW, Kim WY. Molecular generative model based on conditional variational autoencoder for de novo molecular design. J Chem. 2018;10(1):1–9.
Li P, Wang J, Qiao Y, Chen H, Yu Y, Yao X, Gao P, Xie G, Song S. Learn molecular representations from large-scale unlabeled molecules for drug discovery. arXiv preprint arXiv:2012.11175. 2020.
Zhang J, Liu B. A review on the recent developments of sequence-based protein feature extraction methods. Curr Bioinform. 2019;14(3):190–9.
Cui F, Zhang Z, Zou Q. Sequence representation approaches for sequence-based protein prediction tasks that use deep learning. Brief Funct Genom. 2021;20(1):61–73.
Zhang YF, Wang X, Kaushik AC, Chu Y, Shan X, Zhao MZ, Xu Q, Wei DQ. Spvec: a word2vec-inspired feature representation method for drug-target interaction prediction. Front Chem. 2020;7:895.
Wang H, Wang J, Dong C, Lian Y, Liu D, Yan Z. A novel approach for drug-target interactions prediction based on multimodal deep autoencoder. Front Pharmacol. 2020;10:1592.
Jiang M, Li Z, Zhang S, Wang S, Wang X, Yuan Q, Wei Z. Drug-target affinity prediction using graph neural network and contact maps. RSC Adv. 2020;10(35):20701–12.
Wang P, Zheng S, Jiang Y, Li C, Liu J, Wen C, Patronov A, Qian D, Chen H, Yang Y. Structure-aware multimodal deep learning for drug-protein interaction prediction. J Chem Inform Model. 2022;62(5):1308–17.
Zhao Y, Zheng K, Guan B, Guo M, Song L, Gao J, Qu H, Wang Y, Shi D, Zhang Y. Dldti: a learning-based framework for drug-target interaction identification using neural networks and network representation. J Transl Med. 2020;18:1–15.
Lee H, Kim W. Comparison of target features for predicting drug-target interactions by deep neural network based on large-scale drug-induced transcriptome data. Pharmaceutics. 2019;11(8):377.
Li X, Xiong H, Li X, Wu X, Zhang X, Liu J, Bian J, Dou D. Interpretable deep learning: interpretation, interpretability, trustworthiness, and beyond. Knowl Inform Syst. 2022;64(12):3197–234.
Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The molecular signatures database hallmark gene set collection. Cell Syst. 2015;1(6):417–25.
Thafar MA, Olayan RS, Ashoor H, Albaradei S, Bajic VB, Gao X, Gojobori T, Essack M. Dtigems+: drug-target interaction prediction using graph embedding, graph mining, and similarity-based techniques. J Cheminform. 2020;12(1):1–17.
Mohamed SK, Nováček V, Nounu A. Discovering protein drug targets using knowledge graph embeddings. Bioinformatics. 2020;36(2):603–10.
Thafar MA, Olayan RS, Albaradei S, Bajic VB, Gojobori T, Essack M, Gao X. Dti2vec: drug-target interaction prediction using network embedding and ensemble learning. J Cheminform. 2021;13(1):1–18.
Perlman L, Gottlieb A, Atias N, Ruppin E, Sharan R. Combining drug and gene similarity measures for drug-target elucidation. J Comput Biol. 2011;18(2):133–45.
Perlman L, Gottlieb A, Atias N, Ruppin E, Sharan R. Combining drug and gene similarity measures for drug-target elucidation. J Comput Biol. 2011;18(2):133–45.
Shi JY, Yiu SM In: 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (IEEE, 2015): 1636–1641
Shi JY, Li JX, Lu HM, Zhang Y. In: Intelligence Science and Big Data Engineering. Big Data and Machine Learning Techniques: 5th International Conference, IScIDE 2015, Suzhou, June 14–16, 2015, Revised Selected Papers, Part II 5 (Springer, 2015): 477–486
Shi JY, Yiu SM, Li Y, Leung HC, Chin FY. Predicting drug-target interaction for new drugs using enhanced similarity measures and super-target clustering. Methods. 2015;83:98–104.
Buza K, Peška L. Drug-target interaction prediction with bipartite local models and hubness-aware regression. Neurocomputing. 2017;260:284–93.
Pahikkala T, Airola A, Pietilä S, Shakyawar S, Szwajda A, Tang J, Aittokallio T. Toward more realistic drug-target interaction predictions. Brief Bioinform. 2015;16(2):325–37.
He T, Heidemeyer M, Ban F, Cherkasov A, Ester M. Simboost: a read-across approach for predicting drug-target binding affinities using gradient boosting machines. J Cheminform. 2017;9(1):1–14.
Yu H, Chen J, Xu X, Li Y, Zhao H, Fang Y, Li X, Zhou W, Wang W, Wang Y. A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data. PLoS ONE. 2012;7(5): e37608.
Fu G, Ding Y, Seal A, Chen B, Sun Y, Bolton E. Predicting drug target interactions using meta-path-based semantic network analysis. BMC Bioinform. 2016;17(1):1–10.
Wang MY, Li P, Qiao Pl, et al. The virtual screening of the drug protein with a few crystal structures based on the adaboost-svm. Comput Math Methods Med. 2016:2016
Olayan RS, Ashoor H, Bajic VB. Ddr: efficient computational method to predict drug-target interactions using graph mining and machine learning approaches. Bioinformatics. 2018;34(7):1164–73.
Yu H, Chen J, Xu X, Li Y, Zhao H, Fang Y, Li X, Zhou W, Wang W, Wang Y. A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data. PLoS ONE. 2012;7(5): e37608.
Ezzat A, Wu M, Li XL, Kwoh CK. Computational prediction of drug-target interactions using chemogenomic approaches: an empirical survey. Brief Bioinform. 2019;20(4):1337–57.
Xia Z, Wu LY, Zhou X, Wong ST. In: BMC systems biology, vol. 4 (BioMed Central, 2010): 1–16
Van Laarhoven T, Nabuurs SB, Marchiori E. Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics. 2011;27(21):3036–43.
Wang Y, Zeng J. Predicting drug-target interactions using restricted Boltzmann machines. Bioinformatics. 2013;29(13):i126–34.
Aghakhani S, Qabaja A, Alhajj R. Integration of k-means clustering algorithm with network analysis for drug-target interactions network prediction. Int J Data Min Bioinform. 2018;20(3):185–212.
留言 (0)