Myeloid-derived suppressor cells in cancer: therapeutic targets to overcome tumor immune evasion

Gabrilovich DI, Bronte V, Chen SH, et al. The terminology issue for myeloid-derived suppressor cells. Cancer Res. 2007;67(1):425. https://doi.org/10.1158/0008-5472.

Article  PubMed  PubMed Central  Google Scholar 

Bennett JA, Rao VS, Mitchell MS. Systemic bacillus Calmette-Guerin (BCG) activates natural suppressor cells. Proc Natl Acad Sci U S A. 1978;75(10):5142–4. https://doi.org/10.1073/pnas.75.10.5142.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bronte V, Brandau S, Chen SH, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 2016;7:12150. https://doi.org/10.1038/ncomms12150.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cassetta L, Baekkevold ES, Brandau S, et al. Deciphering myeloid-derived suppressor cells: isolation and markers in humans, mice and non-human primates. Cancer Immunol Immunother. 2019;68(4):687–97. https://doi.org/10.1007/s00262-019-02302-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park JA, Wang L, Cheung NV. Modulating tumor infiltrating myeloid cells to enhance bispecific antibody-driven T cell infiltration and anti-tumor response. J Hematol Oncol. 2021;14(1):142. https://doi.org/10.1186/s13045-021-01156-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bronte V, Serafini P, De Santo C, et al. IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J Immunol. 2003;170(1):270–8. https://doi.org/10.4049/jimmunol.170.1.270.

Article  CAS  PubMed  Google Scholar 

Kusmartsev S, Nefedova Y, Yoder D, et al. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol. 2004;172(2):989–99. https://doi.org/10.4049/jimmunol.172.2.989.

Article  CAS  PubMed  Google Scholar 

Mazzoni A, Bronte V, Visintin A, et al. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol. 2002;168(2):689–95. https://doi.org/10.4049/jimmunol.168.2.689.

Article  CAS  PubMed  Google Scholar 

Groth C, Hu X, Weber R, et al. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br J Cancer. 2019;120(1):16–25. https://doi.org/10.1038/s41416-018-0333-1.

Article  CAS  PubMed  Google Scholar 

Kujawski M, Kortylewski M, Lee H, et al. Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J Clin Invest. 2008;118(10):3367–77. https://doi.org/10.1172/JCI35213.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murdoch C, Muthana M, Coffelt SB, et al. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer. 2008;8(8):618–31. https://doi.org/10.1038/nrc2444.

Article  CAS  PubMed  Google Scholar 

Wang D, Sun H, Wei J, et al. CXCL1 is critical for premetastatic niche formation and metastasis in colorectal cancer. Cancer Res. 2017;77(13):3655–65. https://doi.org/10.1158/0008-5472.CAN-16-3199.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331(6024):1565–70. https://doi.org/10.1126/science.1203486.

Article  CAS  PubMed  Google Scholar 

Riaz N, Havel JJ, Makarov V, et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell. 2017;171(4):934–49. https://doi.org/10.1016/j.cell.2017.09.028.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang S, Ning Q, Yang L, et al. Mechanisms of immune escape in the cancer immune cycle. Int Immunopharmacol. 2020;86: 106700. https://doi.org/10.1016/j.intimp.2020.106700.

Article  CAS  PubMed  Google Scholar 

Fu T, Dai LJ, Wu SY, et al. Spatial architecture of the immune microenvironment orchestrates tumor immunity and therapeutic response. J Hematol Oncol. 2021;14(1):98. https://doi.org/10.1186/s13045-021-01103-4.

Article  PubMed  PubMed Central  Google Scholar 

de Coana YP, Wolodarski M, Poschke I, et al. Ipilimumab treatment decreases monocytic MDSCs and increases CD8 effector memory T cells in long-term survivors with advanced melanoma. Oncotarget. 2017;8(13):21539–53. https://doi.org/10.18632/oncotarget.15368.

Article  PubMed  PubMed Central  Google Scholar 

Hoechst B, Ormandy LA, Ballmaier M, et al. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology. 2008;135(1):234–43. https://doi.org/10.1053/j.gastro.2008.03.020.

Article  CAS  PubMed  Google Scholar 

Casbon AJ, Reynaud D, Park C, et al. Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils. Proc Natl Acad Sci U S A. 2015;112(6):E566–75. https://doi.org/10.1073/pnas.1424927112.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Idorn M, Kollgaard T, Kongsted P, et al. Correlation between frequencies of blood monocytic myeloid-derived suppressor cells, regulatory T cells and negative prognostic markers in patients with castration-resistant metastatic prostate cancer. Cancer Immunol Immunother. 2014;63(11):1177–87. https://doi.org/10.1007/s00262-014-1591-2.

Article  CAS  PubMed  Google Scholar 

Henick BS, Villarroel-Espindola F, Datar I, et al. Quantitative tissue analysis and role of myeloid cells in non-small cell lung cancer. J Immunother Cancer. 2022;10:7. https://doi.org/10.1136/jitc-2022-005025.

Article  Google Scholar 

Okla K, Wertel I, Wawruszak A, et al. Blood-based analyses of cancer: Circulating myeloid-derived suppressor cells - is a new era coming? Crit Rev Clin Lab Sci. 2018;55(6):376–407. https://doi.org/10.1080/10408363.2018.1477729.

Article  CAS  PubMed  Google Scholar 

Yanez A, Ng MY, Hassanzadeh-Kiabi N, et al. IRF8 acts in lineage-committed rather than oligopotent progenitors to control neutrophil vs monocyte production. Blood. 2015;125(9):1452–9. https://doi.org/10.1182/blood-2014-09-600833.

Article  CAS  PubMed  Google Scholar 

Condamine T, Mastio J, Gabrilovich DI. Transcriptional regulation of myeloid-derived suppressor cells. J Leukoc Biol. 2015;98(6):913–22. https://doi.org/10.1189/jlb.4RI0515-204R.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karin N. The development and homing of myeloid-derived suppressor cells: from a two-stage model to a multistep narrative. Front Immunol. 2020;11: 557586. https://doi.org/10.3389/fimmu.2020.557586.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu Y, Yi M, Niu M, et al. Myeloid-derived suppressor cells: an emerging target for anticancer immunotherapy. Mol Cancer. 2022;21(1):184. https://doi.org/10.1186/s12943-022-01657-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pal S, Dey D, Chakraborty BC, et al. Diverse facets of MDSC in different phases of chronic HBV infection: Impact on HBV-specific T-cell response and homing. Hepatology. 2022;76(3):759–74. https://doi.org/10.1002/hep.32331.

Article  CAS  PubMed  Google Scholar 

Hanson EM, Clements VK, Sinha P, et al. Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells. J Immunol. 2009;183(2):937–44. https://doi.org/10.4049/jimmunol.0804253.

Article  CAS  PubMed  Google Scholar 

Parker KH, Sinha P, Horn LA, et al. HMGB1 enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cells. Cancer Res. 2014;74(20):5723–33. https://doi.org/10.1158/0008-5472.CAN-13-2347.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ku AW, Muhitch JB, Powers CA, et al. Tumor-induced MDSC act via remote control to inhibit L-selectin-dependent adaptive immunity in lymph nodes. Elife. 2016;510:17875.

Google Scholar 

Liu Y, Wei J, Guo G, et al. Norepinephrine-induced myeloid-derived suppressor cells block T-cell responses via generation of reactive oxygen species. Immunopharmacol Immunotoxicol. 2015;37(4):359–65. https://doi.org/10.3109/08923973.2015.1059442.

Article  CAS  PubMed  Google Scholar 

Kusmartsev S, Eruslanov E, Kubler H, et al. Oxidative stress regulates expression of VEGFR1 in myeloid cells: link to tumor-induced immune suppression in renal cell carcinoma. J Immunol. 2008;181(1):346–53. https://doi.org/10.4049/jimmunol.181.1.346.

Article  CAS  PubMed  Google Scholar 

Huang Y, Chen X, Dikov MM, et al. Distinct roles of VEGFR-1 and VEGFR-2 in the aberrant hematopoiesis assoc

留言 (0)

沒有登入
gif