Nuclear lamina component KAKU4 regulates chromatin states and transcriptional regulation in the Arabidopsis genome

Bernhardt A, Lechner E, Hano P, Schade V, Dieterle M, Anders M, et al. CUL4 associates with DDB1 and DET1 and its downregulation affects diverse aspects of development in Arabidopsis thaliana. Plant J. 2006;47:591–603.

Article  CAS  PubMed  Google Scholar 

Betsuyaku S, Katou S, Takebayashi Y, Sakakibara H, Nomura N, Fukuda H. Salicylic acid and jasmonic acid pathways are activated in spatially different domains around the infection site during effector-triggered immunity in Arabidopsis thaliana. Plant Cell Physiol. 2018;59:439.

Article  PubMed  PubMed Central  Google Scholar 

Bi X, Cheng YJ, Hu B, Ma X, Wu R, Wang JW, et al. Nonrandom domain organization of the Arabidopsis genome at the nuclear periphery. Genome Res. 2017;27:1162–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bloomer RH, Hutchison CE, Bäurle I, Walker J, Fang X, Perera P, et al. The Arabidopsis epigenetic regulator ICU11 as an accessory protein of Polycomb Repressive Complex 2. Proc Natl Acad Sci. 2020;117:16660–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buchwalter A, Kaneshiro JM, Hetzer MW. Coaching from the sidelines: the nuclear periphery in genome regulation. Nat Rev Genet. 2019;20:39–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carollo PS, Barra V. Chromatin epigenetics and nuclear lamina keep the nucleus in shape: Examples from natural and accelerated aging. Biol Cell. 2023;115:e2200023.

Article  PubMed  Google Scholar 

Chen H, Huang X, Gusmaroli G, Terzaghi W, Lau OS, Yanagawa Y, et al. Arabidopsis CULLIN4-damaged DNA binding protein 1 interacts with CONSTITUTIVELY PHOTOMORPHOGENIC1-SUPPRESSOR OF PHYA complexes to regulate photomorphogenesis and flowering time. The Plant cell. 2010;22:108–23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen H, Shen Y, Tang X, Yu L, Wang J, Guo L, et al. Arabidopsis CULLIN4 forms an E3 Ubiquitin Ligase with RBX1 and the CDD complex in mediating light control of development. Plant Cell. 2006;18:1991–2004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi J, Richards EJ. The role of CRWN nuclear proteins in chromatin-based regulation of stress response genes. Plant Signal Behav. 2020;15:1694224.

Article  PubMed  Google Scholar 

Choi J, Strickler SR, Richards EJ. Loss of CRWN nuclear proteins induces cell death and salicylic acid defense signaling. Plant physiology. 2019;179:1315–29.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chung T, Wang D, Kim CS, Yadegari R, Larkins BA. Plant SMU-1 and SMU-2 homologues regulate pre-mRNA splicing and multiple aspects of development. Plant Physiol. 2009;151:1498–512.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ciska M, Moreno Díaz de la Espina S. NMCP/LINC proteins: putative lamin analogs in plants? Plant Signal Behav. 2013;8:e26669.

Article  PubMed  PubMed Central  Google Scholar 

Coll NS, Vercammen D, Smidler A, Clover C, Van Breusegem F, Dangl JL, et al. Arabidopsis type I metacaspases control cell death. Science. 2010;330:1393–7.

Article  CAS  PubMed  Google Scholar 

Consortium, A.I.M. Evidence for network evolution in an Arabidopsis interactome map. Science. 2011;333:601–7.

Article  Google Scholar 

Dauer WT, Worman HJ. The nuclear envelope as a signaling node in development and disease. Developmental cell. 2009;17:626–38.

Article  CAS  PubMed  Google Scholar 

de Leeuw R, Gruenbaum Y, Medalia O. Nuclear Lamins: Thin Filaments with Major Functions. Trends Cell Biol. 2019;28:34–45.

Article  Google Scholar 

Debernardi JM, Mecchia MA, Vercruyssen L, Smaczniak C, Kaufmann K, Inze D, et al. Post-transcriptional control of GRF transcription factors by microRNA miR396 and GIF co-activator affects leaf size and longevity. Plant J. 2014;79:413–26.

Article  CAS  PubMed  Google Scholar 

Dittmer TA, Misteli T. The lamin protein family. Genome Biol. 2011;12:222.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dittmer TA, Stacey NJ, Sugimoto-Shirasu K, Richards EJ. LITTLE NUCLEI genes affecting nuclear morphology in Arabidopsis thaliana. Plant Cell. 2007;19:2793–803.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dobrzynska A, Gonzalo S, Shanahan C, Askjaer P. The nuclear lamina in health and disease. Nucleus. 2016;7:233–48.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dortay H, Gruhn N, Pfeifer A, Schwerdtner M, Schmulling T, Heyl A. Toward an interaction map of the two-component signaling pathway of Arabidopsis thaliana. J Proteome Res. 2008;7:3649–60.

Article  CAS  PubMed  Google Scholar 

Dumbliauskas E, Lechner E, Jaciubek M, Berr A, Pazhouhandeh M, Alioua M, et al. The Arabidopsis CUL4-DDB1 complex interacts with MSI1 and is required to maintain MEDEA parental imprinting. EMBO J. 2011;30:731–43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duroc Y, Lemhemdi A, Larchevêque C, Hurel A, Cuacos M, Cromer L, et al. The kinesin AtPSS1 promotes synapsis and is required for proper crossover distribution in meiosis. PLoS Genet. 2014;10:e1004674.

Article  PubMed  PubMed Central  Google Scholar 

Fang X, Wang L, Ishikawa R, Li Y, Fiedler M, Liu F, et al. Arabidopsis FLL2 promotes liquid-liquid phase separation of polyadenylation complexes. Nature. 2019;569:265–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goto C, Tamura K, Fukao Y, Shimada T, Hara-Nishimura I. The novel nuclear envelope protein KAKU4 modulates nuclear morphology in Arabidopsis. Plant Cell. 2014;26:2143–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goto C, Tamura K, Nishimaki S, Maruyama D, Hara-Nishimura I. The nuclear envelope protein KAKU4 determines the migration order of the vegetative nucleus and sperm cells in pollen tubes. J Exp Bot. 2020;71:6273–81.

Article  CAS  PubMed  Google Scholar 

Graumann K. Finding the missing piece of the puzzle: how NMCPs fit into the plant nuclear lamina. J Exp Bot. 2021;72:6077–80.

Article  CAS  PubMed  Google Scholar 

Graumann K. Evidence for LINC1-SUN associations at the plant nuclear periphery. PloS One. 2014;9:e93406.

Article  PubMed  PubMed Central  Google Scholar 

Graumann K, Runions J, Evans DE. Characterization of SUN-domain proteins at the higher plant nuclear envelope. Plant J. 2010;61:134–44.

Article  CAS  PubMed  Google Scholar 

Graumann K, Vanrobays E, Tutois S, Probst AV, Evans DE, Tatout C. Characterization of two distinct subfamilies of SUN-domain proteins in Arabidopsis and their interactions with the novel KASH-domain protein AtTIK. J Exp Bot. 2014;65:6499–512.

Article  CAS  PubMed  Google Scholar 

Gruenbaum Y, Foisner R. Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Ann Rev Biochem. 2015;84:131–64.

Article  CAS  PubMed  Google Scholar 

Gruenbaum Y, Margalit A, Goldman RD, Shumaker DK, Wilson KL. The nuclear lamina comes of age. Nat Rev Mol Cell Biol. 2005;6:21–31.

Article  CAS  PubMed  Google Scholar 

Gruenbaum Y, Medalia O. Lamins: the structure and protein complexes. Curr Opin Cell Biol. 2015;32:7–12.

Article  CAS  PubMed  Google Scholar 

Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB, Talhout W, et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature. 2008;453:948–51.

Article  CAS  PubMed  Google Scholar 

Guo T, Mao X, Zhang H, Zhang Y, Fu M, Sun Z, et al. Lamin-like proteins negatively regulate plant immunity through NAC WITH TRANSMEMBRANE MOTIF1-LIKE9 and NONEXPRESSOR OF PR GENES1 in Arabidopsis thaliana. Mol Plant. 2017;10:1334–48.

Article  CAS  PubMed  Google Scholar 

Harr JC, Luperchio TR, Wong X, Cohen E, Wheelan SJ, Reddy KL. Directed targeting of chromatin to the nuclear lamina is mediated by chromatin state and A-type lamins. J Cell Biol. 2015;208:33–52.

Article  CAS 

留言 (0)

沒有登入
gif