Targeted C•G-to-T•A base editing with TALE-cytosine deaminases in plants

Gu S, Bodai Z, Cowan QT, Komor AC. Base editors: expanding the types of DNA damage products harnessed for genome editing. Gene and Genome Editing. 2021;1:100005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533:420–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science. 2016;353:8729.

Article  Google Scholar 

Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol. 2020;38:824–44.

Article  CAS  PubMed  Google Scholar 

Kurt IC, Zhou R, Iyer S, Garcia SP, Miller BR, Langner LM, et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat Biotechnol. 2021;39:41–6.

Article  CAS  PubMed  Google Scholar 

Zhao D, Li J, Li S, Xin X, Hu M, Price MA, et al. Glycosylase base editors enable C-to-A and C-to-G base changes. Nat Biotechnol. 2021;39:35–40.

Article  CAS  PubMed  Google Scholar 

Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017;551:464–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 2010;11:636–46.

Article  CAS  PubMed  Google Scholar 

Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 2009;326:1509–12.

Article  CAS  PubMed  Google Scholar 

Mok BY, de Moraes MH, Zeng J, Bosch DE, Kotrys AV, Raguram A, et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature. 2020;583:631–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Willis JCW, Silva-Pinheiro P, Widdup L, Minczuk M, Liu DR. Compact zinc finger base editors that edit mitochondrial or nuclear DNA in vitro and in vivo. Nat Commun. 2022;13:7204.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sabharwal A, Kar B, Restrepo-Castillo S, Holmberg SR, Mathew ND, Kendall BL, et al. The FUSX TALE Base Editor (FUSXTBE) for rapid mitochondrial DNA programming of human cells in vitro and zebrafish disease models in vivo. CRISPR J. 2021;4:799–821.

CAS  PubMed  PubMed Central  Google Scholar 

Silva-Pinheiro P, Nash P, Van Haute L, Mutti CD, Turner K, Minczuk M. In vivo mitochondrial base editing via adeno-associated viral delivery to mouse post-mitotic tissue. Nat Commun. 2022;13:750.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Silva-Pinheiro P, Mutti CD, Van Haute L, Powell C, Nash P, Turner K, et al. A library of base editors for the precise ablation of all protein-coding genes in the mouse mitochondrial genome. Nat Biomed Eng. 2022;7:692–703.

Article  PubMed  PubMed Central  Google Scholar 

Lee S, Lee H, Baek G, Namgung E, Park JM, Kim S, et al. Enhanced mitochondrial DNA editing in mice using nuclear-exported TALE-linked deaminases and nucleases. Genome Biol. 2022;23:211.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mok YG, Lee JM, Chung E, Lee J, Lim K, Cho S-I, et al. Base editing in human cells with monomeric DddA-TALE fusion deaminases. Nat Commun. 2022;13:4038.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mok BY, Kotrys AV, Raguram A, Huang TP, Mootha VK, Liu DR. CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA. Nat Biotechnol. 2022;40:1378–87.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakazato I, Okuno M, Yamamoto H, Tamura Y, Itoh T, Shikanai T, et al. Targeted base editing in the plastid genome of Arabidopsis thaliana. Nat Plants. 2021;7:906–13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kang B-C, Bae S-J, Lee S, Lee JS, Kim A, Lee H, et al. Chloroplast and mitochondrial DNA editing in plants. Nat Plants. 2021;7:899–905.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li R, Char SN, Liu B, Liu H, Li X, Yang B. High-efficiency plastome base editing in rice with TAL cytosine deaminase. Mol Plant. 2021;14:1412–4.

Article  CAS  PubMed  Google Scholar 

Nakazato I, Okuno M, Itoh T, Tsutsumi N, Arimura S. Characterization and development of a plastid genome base editor, ptpTALECD. Plant J. 2023;115:1151–62.

Article  CAS  PubMed  Google Scholar 

Cho S-I, Lee S, Mok YG, Lim K, Lee J, Lee JM, et al. Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases. Cell. 2022;185:1764-1776.e12.

Article  CAS  PubMed  Google Scholar 

Mok YG, Hong S, Bae S-J, Cho S-I, Kim J-S. Targeted A-to-G base editing of chloroplast DNA in plants. Nat Plants. 2022;8:1378–84.

Islam MR, Tomatsu S, Shah GN, Grubb JH, Jain S, Sly WS. Active site residues of human β-glucuronidase. J Biol Chem. 1999;274:23451–5.

Article  CAS  PubMed  Google Scholar 

Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol. 2011;29:149–53.

Article  PubMed  PubMed Central  Google Scholar 

Zhang X, Chen L, Zhu B, Wang L, Chen C, Hong M, et al. Increasing the efficiency and targeting range of cytidine base editors through fusion of a single-stranded DNA-binding protein domain. Nat Cell Biol. 2020;22:740–50.

Article  CAS  PubMed  Google Scholar 

Tan J, Zeng D, Zhao Y, Wang Y, Liu T, Li S, et al. PhieABEs: a PAM-less/free high-efficiency adenine base editor toolbox with wide target scope in plants. Plant Biotechnol J. 2022;20:934–43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xue N, Liu X, Zhang D, Wu Y, Zhong Y, Wang J, et al. Improving adenine and dual base editors through introduction of TadA-8e and Rad51DBD. Nat Commun. 2023;14:1224.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei Y, Li Z, Xu K, Feng H, Xie L, Li D, et al. Mitochondrial base editor DdCBE causes substantial DNA off-target editing in nuclear genome of embryos. Cell Discov. 2022;8:1–4.

Article  Google Scholar 

Lei Z, Meng H, Liu L, Zhao H, Rao X, Yan Y, et al. Mitochondrial base editor induces substantial nuclear off-target mutations. Nature. 2022;606:804–11.

Article  CAS  PubMed  Google Scholar 

Lee S, Lee H, Baek G, Kim J-S. Precision mitochondrial DNA editing with high-fidelity DddA-derived base editors. Nat Biotechnol. 2022;41:378–86.

Article  PubMed  PubMed Central  Google Scholar 

Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S. A modular cloning system for standardized assembly of multigene constructs. PLoS ONE. 2011;6:e16765.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Szurek B, Rossier O, Hause G, Bonas U. Type III-dependent translocation of the Xanthomonas AvrBs3 protein into the plant cell. Mol Microbiol. 2002;46:13–23.

Article  CAS  PubMed  Google Scholar 

Gao H, Wu X, Chai J, Han Z. Crystal structure of a TALE protein reveals an extended N-terminal DNA binding region. Cell Res. 2012;22:1716–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schreiber T, Sorgatz A, List F, Blüher D, Thieme S, Wilmanns M, et al. Refined requirements for protein regions important for activity of the TALE AvrBs3. PLoS ONE. 2015;10:e0120214.

Article  PubMed  PubMed Central  Google Scholar 

Schreiber T, Prange A, Hoppe T, Tissier A. Split-TALE: a TALE-based two-component system for synthetic biology applications in planta. Plant Physiol. 2019;179:1001–12.

Article  CAS 

留言 (0)

沒有登入
gif