Dynamic regulation of stem cell adhesion and differentiation on degradable piezoelectric poly (L-lactic acid) (PLLA) nanofibers

Zhang Y, Liu X, Zeng L, Zhang J, Zuo J, Zou J, Ding J, Chen X. Polymer fiber scaffolds for bone and cartilage tissue engineering. Adv Funct Mater. 2019. https://doi.org/10.1002/adfm.201903279.

Article  Google Scholar 

Kim HD, Amirthalingam S, Kim SL, Lee SS, Rangasamy J, Hwang NS. Biomimetic materials and fabrication approaches for bone tissue engineering. Adv Healthc Mater. 2017. https://doi.org/10.1002/adhm.201700612.

Article  Google Scholar 

Maia FR, Bastos AR, Oliveira JM, Correlo VM, Reis RL. Recent approaches towards bone tissue engineering. Bone. 2022. https://doi.org/10.1016/j.bone.2021.116256.

Article  Google Scholar 

Lai Y-H, Roy Barman S, Ganguly A, Pal A, Yu J-H, Chou S-H, Huang E-W, Lin Z-H, Chen S-Y. Oxygen-producing composite dressing activated by photothermal and piezoelectric effects for accelerated healing of infected wounds. Chem Eng J. 2023. https://doi.org/10.1016/j.cej.2023.146744.

Article  Google Scholar 

Khan A, Joshi R, Sharma MK, Ganguly A, Parashar P, Wang T-W, Lee S, Kao F-C, Lin Z-H. Piezoelectric and triboelectric nanogenerators: promising technologies for self-powered implantable biomedical devices. Nano Energy. 2024. https://doi.org/10.1016/j.nanoen.2023.109051.

Article  Google Scholar 

Chen S, Zhu P, Mao L, Wu W, Lin H, Xu D, Lu X, Shi J. Piezocatalytic medicine: an emerging frontier using piezoelectric materials for biomedical applications. Adv Mater. 2023. https://doi.org/10.1002/adma.202208256.

Article  Google Scholar 

Ning C, Zhou Z, Tan G, Zhu Y, Mao C. Electroactive polymers for tissue regeneration: developments and perspectives. Prog Polym Sci. 2018. https://doi.org/10.1016/j.progpolymsci.2018.01.001.

Article  Google Scholar 

Zheng T, Huang Y, Zhang X, Cai Q, Deng X, Yang X. Mimicking the electrophysiological microenvironment of bone tissue using electroactive materials to promote its regeneration. J Mater Chem B. 2020. https://doi.org/10.1039/D0TB01601B.

Article  Google Scholar 

Yu P, Ning C, Zhang Y, Tan G, Lin Z, Liu S, Wang X, Yang H, Li K, Yi X, Zhu Y, Mao C. Bone-inspired spatially specific piezoelectricity induces bone regeneration. Theranostics. 2017. https://doi.org/10.7150/thno.19748.

Article  Google Scholar 

Smith M, Kar-Narayan S. Piezoelectric polymers: theory, challenges and opportunities. Int Mater Rev. 2022. https://doi.org/10.1080/09506608.2021.1915935.

Article  Google Scholar 

Zhou Z, Yu P, Zhou L, Tu L, Fan L, Zhang F, Dai C, Liu Y, Ning C, Du J, Tan G. Polypyrrole nanocones and dynamic piezoelectric stimulation-induced stem cell osteogenic differentiation. ACS Biomater Sci Eng. 2019. https://doi.org/10.1021/acsbiomaterials.9b00812.

Article  Google Scholar 

Feig VR, Tran H, Bao Z. Biodegradable polymeric materials in degradable electronic devices. ACS Cent Sci. 2018. https://doi.org/10.1021/acscentsci.7b00595.

Article  Google Scholar 

Surmenev RA, Orlova T, Chernozem RV, Ivanova AA, Bartasyte A, Mathur S, Surmeneva MA. Hybrid lead-free polymer-based nanocomposites with improved piezoelectric response for biomedical energy-harvesting applications: a review. Nano Energy. 2019. https://doi.org/10.1016/j.nanoen.2019.04.090.

Article  Google Scholar 

Zhang F, King MW. Biodegradable polymers as the pivotal player in the design of tissue engineering scaffolds. Adv Healthc Mater. 2020. https://doi.org/10.1002/adhm.201901358.

Article  Google Scholar 

Li J, Qin L, Yang K, Ma Z, Wang Y, Cheng L, Zhao D. Materials evolution of bone plates for internal fixation of bone fractures: a review. J Mater Sci Technol. 2020. https://doi.org/10.1016/j.jmst.2019.07.024.

Article  Google Scholar 

Uppal G, Thakur A, Chauhan A, Bala S. Magnesium based implants for functional bone tissue regeneration – A review. J Magnes Alloys. 2022. https://doi.org/10.1016/j.jma.2021.08.017.

Article  Google Scholar 

Huang B, Tan L, Liu X, Li J, Wu S. A facile fabrication of novel stuff with antibacterial property and osteogenic promotion utilizing red phosphorus and near-infrared light. Bioact Mater. 2019. https://doi.org/10.1016/j.bioactmat.2018.11.002.

Article  Google Scholar 

Wu S, Liu X, Yeung KWK, Liu C, Yang X. Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R Rep. 2014. https://doi.org/10.1016/j.mser.2014.04.001.

Article  Google Scholar 

Lee S, Silva SM, Caballero Aguilar LM, Eom T, Moulton SE, Shim BS. Biodegradable bioelectronics for biomedical applications. J Mater Chem B. 2022. https://doi.org/10.1039/D2TB01475K.

Article  Google Scholar 

Hsu S, Hung K-C, Chen C-W. Biodegradable polymer scaffolds. J Mater Chem B. 2016. https://doi.org/10.1039/C6TB02176J.

Article  Google Scholar 

Liu Y, Cui H, Zhuang X, Wei Y, Chen X. Electrospinning of aniline pentamer-graft-gelatin/PLLA nanofibers for bone tissue engineering. Acta Biomater. 2014. https://doi.org/10.1016/j.actbio.2014.08.036.

Article  Google Scholar 

Liu Q, Xie S, Fan D, Xie T, Xue G, Gou X, Li X. Integrated osteochondral differentiation of mesenchymal stem cells on biomimetic nanofibrous mats with cell adhesion-generated piezopotential gradients. Nanoscale. 2022. https://doi.org/10.1039/D1NR06676E.

Article  Google Scholar 

Ishii D, Ying TH, Mahara A, Murakami S, Yamaoka T, Lee W, Iwata T. In vivo tissue response and degradation behavior of PLLA and stereocomplexed PLA nanofibers. Biomacromolecules. 2009. https://doi.org/10.1021/bm8009363.

Article  Google Scholar 

Koski A, Yim K, Shivkumar S. Effect of molecular weight on fibrous PVA produced by electrospinning. Mater Lett. 2004. https://doi.org/10.1016/S0167-577X(03)00532-9.

Article  Google Scholar 

Jun Z, Hou H, Wendorff JH, Greiner A. Poly(vinyl alcohol) nanofibres by electrospinning: influence of molecular weight on fibre shape. E-Polym. 2005. https://doi.org/10.1515/epoly.2005.5.1.387.

Article  Google Scholar 

Mun RP, Byars JA, Boger DV. The effects of polymer concentration and molecular weight on the breakup of laminar capillary jets. J Non-Newton Fluid Mech. 1998. https://doi.org/10.1016/S0377-0257(97)00074-8.

Article  Google Scholar 

Joung H, Kim C, Yu J, Lee S, Paeng K, Yang J. Impact of chain conformation on structural heterogeneity in polymer network. Nano Lett. 2022. https://doi.org/10.1021/acs.nanolett.2c01574.

Article  Google Scholar 

Hakkarainen M, Albertsson A-C, Karlsson S. Weight losses and molecular weight changes correlated with the evolution of hydroxyacids in simulated in uivo degradation of homo- and copolymers of PLA and PGA. Polym Degrad Stab. 1996. https://doi.org/10.1016/0141-3910(96)00009-2.

Article  Google Scholar 

Ru J-F, Yang S-G, Zhou D, Yin H-M, Lei J, Li Z-M. 22Dominant β-Form of poly(L-lactic acid) obtained directly from Melt under Shear and pressure Fields. Macromolecules. 2016. https://doi.org/10.1021/acs.macromol.6b00595.

Article  Google Scholar 

Renouf-Glauser AC, Rose J, Farrar DF, Cameron RE. Comparison of the hydrolytic degradation and deformation properties of a PLLA – lauric acid based family of biomaterials. Biomacromolecules. 2006. https://doi.org/10.1021/bm050746v.

Article  Google Scholar 

Shuai C, Li Y, Feng P, Guo W, Yang W, Peng S. Positive feedback effects of mg on the hydrolysis of poly-l-lactic acid (PLLA): promoted degradation of PLLA scaffolds, Polym. Test. 2018. https://doi.org/10.1016/j.polymertesting.2018.03.042.

Article  Google Scholar 

Wang Z, Tonderys D, Leggett SE, Williams EK, Kiani MT, Spitz Steinberg R, Qiu Y, Wong IY, Hurt RH. Wrinkled, wavelength-tunable graphene-based surface topographies for directing cell alignment and morphology. Carbon. 2016. https://doi.org/10.1016/j.carbon.2015.03.040.

Article  Google Scholar 

Cutiongco MFA, Jensen BS, Reynolds PM, Gadegaard N. Predicting gene expression using morphological cell responses to nanotopography. Nat Commun. 2020. https://doi.org/10.1038/s41467-020-15114-1.

Article  Google Scholar 

Huang Q, Elkhooly TA, Liu X, Zhang R, Yang X, Shen Z, Feng Q. Effects of hierarchical micro/nano-topographies on the morphology, proliferation and differentiation of osteoblast-like cells. Colloids Surf B Biointerfaces. 2016. https://doi.org/10.1016/j.colsurfb.2016.04.031.

Article  Google Scholar 

Xue G, Zhang Y, Xie T, Zhang Z, Liu Q, Li X, Gou X. Cell adhesion-mediated piezoelectric self-stimulation on polydopamine-modified poly(vinylidene fluoride) membranes. ACS Appl Mater Interfaces. 2021. https://doi.org/10.1021/acsami.1c02457.

Article  Google Scholar 

Zhang R, Gong Y, Cai Z, Deng Y, Shi X, Pan H, Xu L, Zhang H. A composite membrane with microtopographical morphology to regulate cellular behavior for improved tissue regeneration. Acta Biomater. 2023. https://doi.org/10.1016/j.actbio.2023.06.046.

Article  Google Scholar 

Kunzler TP, Drobek T, Schuler M, Spencer ND. Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients. Biomaterials. 2007. https://doi.org/10.1016/j.biomaterials.2007.01.019.

Article  Google Scholar 

Lu XL, Huo B, Park M, Guo XE. Calcium response in osteocytic networks under steady and oscillatory fluid flow. Bone. 2012. https://doi.org/10.1016/j.bone.2012.05.021.

Article  Google Scholar 

Zhang Y, Dai Y, Hao W, Zhu S, Wang C, Wang R, Gou X. Decoupling the roles of mechanical stretching and piezoelectrical stimulation in calcium signal mediated osteogenic differentiation of MSCs on biomimetic nanofibers. Appl Mater Today. 2024. https://doi.org/10.1016/j.apmt.2023.102026.

Article  Google Scholar 

Wu H, Yin Y, Hu X, Peng C, Liu Y, Li Q, Huang W, Huang Q. Effects of environmental pH on macrophage polarization and osteoimmunomodulation. ACS Biomater Sci Eng. 2019. https://doi.org/10.1021/acsbiomaterials.9b01181.

Article  Google Scholar 

Lee C-Y, Huang T-J, Wu M-H, Li Y-Y, Lee K-D. High expression of acid-sensing ion channel 2 (ASIC2) in bone cells in osteoporotic vertebral fractures. BioMed Res Int. 2019. https://doi.org/10.1155/2019/4714279.

Article  Google Scholar 

Huang W, Yang J, Feng Q, Shu Y, Liu C, Zeng S, Guan H, Ge L, Pathak JL, Zeng S. Mesoporous bioactive glass nanoparticles promote odontogenesis and neutralize pathophysiological acidic pH. Front Mater. 2020. https://doi.org/10.3389/fmats.2020.00241.

Article  Google Scholar 

留言 (0)

沒有登入
gif