O’Donoghue N, Mowatt D, Sykes AJ. Electrochemotherapy and Ablative therapies in non-melanoma skin Cancer. Clin Oncol (R Coll Radiol). 2019;31(11):e1–9. https://doi.org/10.1016/j.clon.2019.08.010.
Wichtowski M, Murawa D. Electrochemotherapy in the treatment of melanoma. Contemp Oncol (Pozn). 2018;22(1):8–13. https://doi.org/10.5114/wo.2018.74387.
Zhou H, Wang Z, Dong Y, Alhaskawi A, Tu T, Hasan Abdullah Ezzi S, Goutham Kota V, Hasan Abdulla Hasan Abdulla M, Li P, Wu B, Chen Y, Lu H. New advances in treatment of skin malignant tumors with nanosecond pulsed electric field: a literature review. Bioelectrochemistry. 2023;150:108366. https://doi.org/10.1016/j.bioelechem.2023.108366.
Ferioli M, Lancellotta V, Perrone AM, Arcelli A, Galuppi A, Strigari L, Buwenge M, De Terlizzi F, Cammelli S, Iezzi R, De Iaco P, Tagliaferri L, Morganti AG. Electrochemotherapy of skin metastases from malignant melanoma: a PRISMA-compliant systematic review. Clin Exp Metastasis. 2022 Oct;39(5):743–55. https://doi.org/10.1007/s10585-022-10180-9.
Garcia PA, Davalos RV, Miklavcic D. A numerical investigation of the electric and thermal cell kill distributions in electroporation-based therapies in tissue. PLoS ONE. 2014;9(8):e103083. https://doi.org/10.1371/journal.pone.0103083.
Lindelauf KHK, Thomas A, Baragona M, Jouni A, Nolte T, Pedersoli F, Pfeffer J, Baumann M, Maessen RTH, Ritter A. Plant-based model for the visual evaluation of electroporated area after irreversible electroporation and its comparison to in-vivo animal data. Sci Prog 2023 Jan-Mar;106(1):368504231156294. https://doi.org/10.1177/00368504231156294.
Hjouj M, Rubinsky B. Magnetic resonance imaging characteristics of nonthermal irreversible electroporation in vegetable tissue. J Membr Biol. 2010;236:137–46.
Merola G, Fusco R, Di Bernardo E, D’Alessio V, Izzo F, Granata V, Contartese D, Cadossi M, Audenino A, Gallo GP. Design and characterization of a minimally invasive bipolar electrode for Electroporation. Biology (Basel). 2020;9(9):303. https://doi.org/10.3390/biology9090303.
Angersbach A, Heinz V, Knorr D. Effects of pulsed electric fields on cell membranes in real food systems. Innovative Food Sci Emerg Technol. 2000;1:135–49.
Yao C, Dong S, Zhao Y, Lv Y, Liu H, Gong L, Ma J, Wang H, Sun Y. Bipolar microsecond pulses and insulated needle electrodes for reducing muscle contractions during irreversible electroporation. IEEE Trans Biomed Eng. 2017;64(12):2924–37. https://doi.org/10.1109/TBME.2017.2690624.
Bernardis A, Bullo M, Giovanni Campana L, Di Barba P, Dughiero F, Forzan M, Mognaschi M, Sgarbossa ME, Sieni P. Electric field computation and measurements in the electroporation of inhomogeneous samples. Open Phys. 2017;15:790–6. https://doi.org/10.1515/phys-2017-0092.
Miklovic T, Latouche EL, DeWitt MR, Davalos RV, Sano MB. A Comprehensive characterization of parameters affecting high-frequency irreversible electroporation lesions. Ann Biomed Eng. 2017;45(11):2524–34. https://doi.org/10.1007/s10439-017-1889-2.
Bhonsle SP, Arena CB, Sweeney DC, Davalos RV. Mitigation of impedance changes due to electroporation therapy using bursts of high-frequency bipolar pulses. Biomed Eng Online. 2015;14(Suppl 3):S3. https://doi.org/10.1186/1475-925X-14-S3-S3.
Ivorra A, Mir LM, Rubinsky B. Electric field redistribution due to the conductivity changes during tissue electroporation: experiments with a sample vegetal model. IFMBE Proceedings 25/XIII, pp.59–62, 2009.
Wardhana G, Raman NM, Abayazid M, Fütterer JJ. Investigating the effect of electrode orientation on irreversible electroporation with experiment and simulation. Int J Comput Assist Radiol Surg. 2022;17(8):1399–407. https://doi.org/10.1007/s11548-022-02618-y.
Silve A, Guimerà Brunet A, Al-Sakere B, Ivorra A, Mir LM. Comparison of the effects of the repetition rate between microsecond and nanosecond pulses: electropermeabilization-induced electro-desensitization? Biochim Biophys Acta. 2014;1840(7):2139–51. https://doi.org/10.1016/j.bbagen.2014.02.011.
Jeong S, Kim H, Park J, Kim KW, Sim SB, Chung JH. Evaluation of electroporated area using 2,3,5-triphenyltetrazolium chloride in a potato model. Sci Rep. 2021;11(1):20431. https://doi.org/10.1038/s41598-021-99987-2.
Sheehan MC, Srimathveeravalli G. Pulsed electric fields. Principles and Technologies for Electromagnetic Based Therapies. In Principles and Technologies for Electromagnetic Energy Based Therapies. Prakash, P.; Srimathveeravalli, G, editors. Elsevier Academic Press. 2021. ISBN: 9780128205945, pp: 71–106.
Gómez-Barea M, García-Sánchez T, Ivorra A. A computational comparison of radiofrequency and pulsed field ablation in terms of lesion morphology in the cardiac chamber. Sci Rep. 2022;12(1):16144. https://doi.org/10.1038/s41598-022-20212-9.
Zhao Y, Bhonsle S, Dong S, Lv Y, Liu H, Safaai-Jazi A, Davalos RV. Characterization of conductivity changes during high-frequency irreversible electroporation for Treatment Planning. EEE Trans Biomed Eng. 2018;65(8):1810–9. https://doi.org/10.1109/TBME.2017.2778101.
Menegazzo I, Mammi S, Sgarbossa P, Bartolozzi A, Mozzon M, Bertani R, Forzan M, Sundararajan R, Sieni E. Time Domain Nuclear Magnetic Resonance (TD-NMR) to evaluate the effect of potato cell membrane electroporation. Innov Food Sci Emerg Technol. 2020;65:102456. https://doi.org/10.1016/j.ifset.2020.102456.
Castellví Q, Banús J, Ivorra A. 3D assessment of irreversible electroporation treatments in vegetal models. In: 1st World Congress on Electroporation and Pulsed Electric fields in Biology, Medicine and Food & Environmental Technologies 2016. Springer, pp 294–7. https://doi.org/10.1007/978-981-287-817-5_65.
Zhang X, Zhang X, Ding X, Wang Z, Fan Y, Chen G, Hu X, Zheng J, Xue Z, He X, Zhang X, Wei Y, Zhang Z, Li J, Li J, Yang J, Xue X, Ma L, Xiao Y. Novel irreversible electroporation ablation (Nano-knife) versus radiofrequency ablation for the treatment of solid liver tumors: a comparative, randomized, multicenter clinical study. Front Oncol. 2022;12:945123. https://doi.org/10.3389/fonc.2022.945123. eCollection 2022.
留言 (0)