Computer modelling and vegetable bench test of a bipolar electrode array intended for use in high frequency irreversible electroporation treatment of skin cancer

O’Donoghue N, Mowatt D, Sykes AJ. Electrochemotherapy and Ablative therapies in non-melanoma skin Cancer. Clin Oncol (R Coll Radiol). 2019;31(11):e1–9. https://doi.org/10.1016/j.clon.2019.08.010.

Article  Google Scholar 

Wichtowski M, Murawa D. Electrochemotherapy in the treatment of melanoma. Contemp Oncol (Pozn). 2018;22(1):8–13. https://doi.org/10.5114/wo.2018.74387.

Article  Google Scholar 

Zhou H, Wang Z, Dong Y, Alhaskawi A, Tu T, Hasan Abdullah Ezzi S, Goutham Kota V, Hasan Abdulla Hasan Abdulla M, Li P, Wu B, Chen Y, Lu H. New advances in treatment of skin malignant tumors with nanosecond pulsed electric field: a literature review. Bioelectrochemistry. 2023;150:108366. https://doi.org/10.1016/j.bioelechem.2023.108366.

Article  Google Scholar 

Ferioli M, Lancellotta V, Perrone AM, Arcelli A, Galuppi A, Strigari L, Buwenge M, De Terlizzi F, Cammelli S, Iezzi R, De Iaco P, Tagliaferri L, Morganti AG. Electrochemotherapy of skin metastases from malignant melanoma: a PRISMA-compliant systematic review. Clin Exp Metastasis. 2022 Oct;39(5):743–55. https://doi.org/10.1007/s10585-022-10180-9.

Garcia PA, Davalos RV, Miklavcic D. A numerical investigation of the electric and thermal cell kill distributions in electroporation-based therapies in tissue. PLoS ONE. 2014;9(8):e103083. https://doi.org/10.1371/journal.pone.0103083.

Article  Google Scholar 

Lindelauf KHK, Thomas A, Baragona M, Jouni A, Nolte T, Pedersoli F, Pfeffer J, Baumann M, Maessen RTH, Ritter A. Plant-based model for the visual evaluation of electroporated area after irreversible electroporation and its comparison to in-vivo animal data. Sci Prog 2023 Jan-Mar;106(1):368504231156294. https://doi.org/10.1177/00368504231156294.

Hjouj M, Rubinsky B. Magnetic resonance imaging characteristics of nonthermal irreversible electroporation in vegetable tissue. J Membr Biol. 2010;236:137–46.

Article  Google Scholar 

Merola G, Fusco R, Di Bernardo E, D’Alessio V, Izzo F, Granata V, Contartese D, Cadossi M, Audenino A, Gallo GP. Design and characterization of a minimally invasive bipolar electrode for Electroporation. Biology (Basel). 2020;9(9):303. https://doi.org/10.3390/biology9090303.

Article  Google Scholar 

Angersbach A, Heinz V, Knorr D. Effects of pulsed electric fields on cell membranes in real food systems. Innovative Food Sci Emerg Technol. 2000;1:135–49.

Article  Google Scholar 

Yao C, Dong S, Zhao Y, Lv Y, Liu H, Gong L, Ma J, Wang H, Sun Y. Bipolar microsecond pulses and insulated needle electrodes for reducing muscle contractions during irreversible electroporation. IEEE Trans Biomed Eng. 2017;64(12):2924–37. https://doi.org/10.1109/TBME.2017.2690624.

Article  Google Scholar 

Bernardis A, Bullo M, Giovanni Campana L, Di Barba P, Dughiero F, Forzan M, Mognaschi M, Sgarbossa ME, Sieni P. Electric field computation and measurements in the electroporation of inhomogeneous samples. Open Phys. 2017;15:790–6. https://doi.org/10.1515/phys-2017-0092.

Article  Google Scholar 

Miklovic T, Latouche EL, DeWitt MR, Davalos RV, Sano MB. A Comprehensive characterization of parameters affecting high-frequency irreversible electroporation lesions. Ann Biomed Eng. 2017;45(11):2524–34. https://doi.org/10.1007/s10439-017-1889-2.

Article  Google Scholar 

Bhonsle SP, Arena CB, Sweeney DC, Davalos RV. Mitigation of impedance changes due to electroporation therapy using bursts of high-frequency bipolar pulses. Biomed Eng Online. 2015;14(Suppl 3):S3. https://doi.org/10.1186/1475-925X-14-S3-S3.

Article  Google Scholar 

Ivorra A, Mir LM, Rubinsky B. Electric field redistribution due to the conductivity changes during tissue electroporation: experiments with a sample vegetal model. IFMBE Proceedings 25/XIII, pp.59–62, 2009.

Wardhana G, Raman NM, Abayazid M, Fütterer JJ. Investigating the effect of electrode orientation on irreversible electroporation with experiment and simulation. Int J Comput Assist Radiol Surg. 2022;17(8):1399–407. https://doi.org/10.1007/s11548-022-02618-y.

Article  Google Scholar 

Silve A, Guimerà Brunet A, Al-Sakere B, Ivorra A, Mir LM. Comparison of the effects of the repetition rate between microsecond and nanosecond pulses: electropermeabilization-induced electro-desensitization? Biochim Biophys Acta. 2014;1840(7):2139–51. https://doi.org/10.1016/j.bbagen.2014.02.011.

Article  Google Scholar 

Jeong S, Kim H, Park J, Kim KW, Sim SB, Chung JH. Evaluation of electroporated area using 2,3,5-triphenyltetrazolium chloride in a potato model. Sci Rep. 2021;11(1):20431. https://doi.org/10.1038/s41598-021-99987-2.

Article  Google Scholar 

Sheehan MC, Srimathveeravalli G. Pulsed electric fields. Principles and Technologies for Electromagnetic Based Therapies. In Principles and Technologies for Electromagnetic Energy Based Therapies. Prakash, P.; Srimathveeravalli, G, editors. Elsevier Academic Press. 2021. ISBN: 9780128205945, pp: 71–106.

Gómez-Barea M, García-Sánchez T, Ivorra A. A computational comparison of radiofrequency and pulsed field ablation in terms of lesion morphology in the cardiac chamber. Sci Rep. 2022;12(1):16144. https://doi.org/10.1038/s41598-022-20212-9.

Article  Google Scholar 

Zhao Y, Bhonsle S, Dong S, Lv Y, Liu H, Safaai-Jazi A, Davalos RV. Characterization of conductivity changes during high-frequency irreversible electroporation for Treatment Planning. EEE Trans Biomed Eng. 2018;65(8):1810–9. https://doi.org/10.1109/TBME.2017.2778101.

Article  Google Scholar 

Menegazzo I, Mammi S, Sgarbossa P, Bartolozzi A, Mozzon M, Bertani R, Forzan M, Sundararajan R, Sieni E. Time Domain Nuclear Magnetic Resonance (TD-NMR) to evaluate the effect of potato cell membrane electroporation. Innov Food Sci Emerg Technol. 2020;65:102456. https://doi.org/10.1016/j.ifset.2020.102456.

Article  Google Scholar 

Castellví Q, Banús J, Ivorra A. 3D assessment of irreversible electroporation treatments in vegetal models. In: 1st World Congress on Electroporation and Pulsed Electric fields in Biology, Medicine and Food & Environmental Technologies 2016. Springer, pp 294–7. https://doi.org/10.1007/978-981-287-817-5_65.

Zhang X, Zhang X, Ding X, Wang Z, Fan Y, Chen G, Hu X, Zheng J, Xue Z, He X, Zhang X, Wei Y, Zhang Z, Li J, Li J, Yang J, Xue X, Ma L, Xiao Y. Novel irreversible electroporation ablation (Nano-knife) versus radiofrequency ablation for the treatment of solid liver tumors: a comparative, randomized, multicenter clinical study. Front Oncol. 2022;12:945123. https://doi.org/10.3389/fonc.2022.945123. eCollection 2022.

Article  Google Scholar 

留言 (0)

沒有登入
gif