Monte Carlo methods for medical imaging research

Laal M. Innovation process in medical imaging. Proc Soc Behav Sci. 2013;81:60?4. https://doi.org/10.1016/j.sbspro.2013.06.388.

Article  Google Scholar 

Hussain S, Mubeen I, Ullah N, Shah SSUD, Khan BA, Zahoor M, et al. Modern diagnostic imaging technique applications and risk factors in the medical field: a review. BioMed Res Int. 2022;2022:5164970. https://doi.org/10.1155/2022/5164970.

Article  Google Scholar 

Morin O, Gillis A, Chen J, Aubin M, Bucci MK, Roach M, et al. Megavoltage cone-beam CT: system description and clinical applications. Med Dosim. 2006;31:51?61. https://doi.org/10.1016/j.meddos.2005.12.009.

Article  Google Scholar 

Srinivasan K, Mohammadi M, Shepherd J. Applications of linac-mounted kilovoltage cone-beam computed tomography in modern radiation therapy: a review. Pol J Radiol. 2014;79:181?93.

Article  Google Scholar 

Shakirin G, Braess H, Fiedler F, Kunath D, Laube K, Parodi K, et al. Implementation and workflow for PET monitoring of therapeutic ion irradiation: a comparison of in-beam, in-room, and off-line techniques. Phys Med Biol. 2011;56:1281?98. https://doi.org/10.1088/0031-9155/56/5/004.

Article  Google Scholar 

Krimmer J, Dauvergne D, Létang JM, Testa É. Prompt-gamma monitoring in hadrontherapy: a review. Nucl Instrum Methods Phys Res Sect A: Accel Spectrometers Detect Assoc Equip. 2018;878:58?73. https://doi.org/10.1016/j.nima.2017.07.063.

Article  Google Scholar 

Sale KE, JrPM B, Buck RM, Cullen D, Fujino D, Hartmann-Siantar C. Applications of the Monte Carlo radiation transport toolkit at LLNL. Radiat Sources Radiat Interact. 1999. https://doi.org/10.1117/12363708.

Article  Google Scholar 

Razani A. A Monte Carlo method for radiation transport calculations. J Nucl Sci Technol. 1972;9:551?4. https://doi.org/10.3327/jnst.9.551.

Article  MathSciNet  Google Scholar 

Vassiliev ON. Monte Carlo methods for radiation transport, fundamentals and advanced topics. Biol Med Phys Biomed Eng. 2016. https://doi.org/10.1007/978-3-319-44141-2_7.

Article  Google Scholar 

Stanley DN, Papanikolaou N, Gutiérrez AN. An evaluation of the stability of image-quality parameters of varian on-board imaging (OBI) and EPID imaging systems. J Appl Clin Méd Phys. 2015;16:87?98. https://doi.org/10.1120/jacmp.v16i2.5088.

Article  Google Scholar 

Gach HM, Tanase C, Boada F. (2008) 2D & 3D Shepp-Logan Phantom Standards for MRI. In: 2008 19th Int Conf Syst Eng 521?6. https://doi.org/10.1109/icseng.2008.15.

Pan T, Einstein SA, Kappadath SC, Grogg KS, Gomez CL, Alessio AM, et al. Performance evaluation of the 5-ring GE Discovery MI PET/CT system using the national electrical manufacturers association NU 2?2012 Standard. Méd Phys. 2019;46:3025?33. https://doi.org/10.1002/mp.13576.

Article  Google Scholar 

MacFarlane CR. Radiologists AC of. ACR accreditation of nuclear medicine and PET imaging departments. J Nucl Med Technol. 2006;34:18?24.

Google Scholar 

Perl J, Shin J, Schümann J, Faddegon B, Paganetti H. TOPAS: an innovative proton Monte Carlo platform for research and clinical applications. Med Phys. 2012;39:6818?37. https://doi.org/10.1118/1.4758060.

Article  Google Scholar 

Faddegon B, Ramos-Méndez J, Schuemann J, McNamara A, Shin J, Perl J, et al. The TOPAS tool for particle simulation, a Monte Carlo simulation tool for physics, biology and clinical research. Phys Medica. 2020;72:114?21. https://doi.org/10.1016/j.ejmp.2020.03.019.

Article  Google Scholar 

Lee H, Cheon B-W, Feld JW, Grogg K, Perl J, Ramos-Méndez JA, et al. TOPAS-imaging: extensions to the TOPAS simulation toolkit for medical imaging systems. Phys Med Biol. 2023;68:084001. https://doi.org/10.1088/1361-6560/acc565.

Article  Google Scholar 

Mainegra-Hing E, Kawrakow I. Variance reduction techniques for fast Monte Carlo CBCT scatter correction calculations. Phys Med Biol. 2010;55:4495?507. https://doi.org/10.1088/0031-9155/55/16/s05.

Article  Google Scholar 

Staelens S, Beenhouwer JD, Kruecker D, Maigne L, Rannou F, Ferrer L, et al. GATE: Improving the computational efficiency. Nucl Instrum Methods Phys Res Sect A: Accel Spectrometers, Detect Assoc Equip. 2006;569:341?5. https://doi.org/10.1016/j.nima.2006.08.070.

Article  Google Scholar 

Haynor DR, Harrison RL, Lewellen TK, Bice AN, Anson CP, Gillispie SB, et al. Improving the efficiency of emission tomography simulations using variance reduction techniques. IEEE Trans Nucl Sci. 1990;37:749?53. https://doi.org/10.1109/23.106709.

Article  Google Scholar 

Shi M, Myronakis M, Hu Y-H, Jacobson M, Lehmann M, Fueglistaller R, et al. A novel method for fast image simulation of flat panel detectors. Phys Med Biology. 2019;64:095019. https://doi.org/10.1088/1361-6560/ab12aa.

Article  Google Scholar 

Lin EC. Radiation risk from medical imaging. Mayo Clin Proc. 2010;85:1142?6. https://doi.org/10.4065/mcp.2010.0260.

Article  Google Scholar 

Shope TB, Gagne RM, Johnson GC. A method for describing the doses delivered by transmission X-ray computed tomography. Med Phys. 1981;8:488?95. https://doi.org/10.1118/1.594995.

Article  Google Scholar 

Treb K, Li K. Accuracy of weighted CTDI in estimating average dose delivered to CTDI phantoms: an experimental study. Méd Phys. 2020;47:6484?99. https://doi.org/10.1002/mp.14528.

Article  Google Scholar 

Toohey RE, Stabin MG, Watson EE. The AAPM/RSNA physics tutorial for residents. Radiographics. 2000;20:533?46. https://doi.org/10.1148/radiographics.20.2.g00mc33533.

Article  Google Scholar 

Marin JFG, Nunes RF, Coutinho AM, Zaniboni EC, Costa LB, Barbosa FG, et al. Theranostics in nuclear medicine: emerging and re-emerging integrated imaging and therapies in the era of precision oncology. Radiographics. 2020;40:1715?40. https://doi.org/10.1148/rg.2020200021.

Article  Google Scholar 

Reinhart AM, Fast MF, Ziegenhein P, Nill S, Oelfke U. A kernel-based dose calculation algorithm for kV photon beams with explicit handling of energy and material dependencies. Br J Radiol. 2016;90:20160426. https://doi.org/10.1259/bjr.20160426.

Article  Google Scholar 

Heidarloo N, Aghamiri SMR, Saghamanesh S, Azma Z, Alaei P. A novel analytical method for computing dose from kilovoltage beams used in image-guided radiation therapy. Phys Med. 2022;96:54?61. https://doi.org/10.1016/j.ejmp.2022.02.020.

Article  Google Scholar 

Graves S, Tiwari A, Sunderland J. Collapsed-cone convolution superposition for improved accuracy of voxelwise dosimetry. J Nucl Med. 2020;61:535.

Google Scholar 

Tian X, Segars WP, Dixon RL, Samei E. Convolution-based estimation of organ dose in tube current modulated CT. Phys Med Biol. 2016;61:3935?54. https://doi.org/10.1088/0031-9155/61/10/3935.

Article  Google Scholar 

Graves SA, Flynn RT, Hyer DE. Dose point kernels for 2,174 radionuclides. Med Phys. 2019;46:5284?93. https://doi.org/10.1002/mp.13789.

Article  Google Scholar 

Heidarloo N, Aghamiri SMR, Saghamanesh S, Azma Z, Alaei P. Generation of material-specific energy deposition kernels for kilovoltage X-ray dose calculations. Med Phys. 2021. https://doi.org/10.1002/mp.15061.

Article  Google Scholar 

Alaei P, Gerbi BJ, Geise RA. Generation and use of photon energy deposition kernels for diagnostic quality X rays. Med Phys. 1999;26:1687?97. https://doi.org/10.1118/1.598674.

Article  Google Scholar 

Tiwari A, Graves S, Sunderland J. Measurements of dose point kernels using GATE Monte Carlo toolkit for personalized convolution dosimetry. J Nucl Med. 2019;60:274.

Google Scholar 

Papadimitroulas P. Dosimetry applications in GATE Monte Carlo toolkit. Phys Med. 2017;41:136?40. https://doi.org/10.1016/j.ejmp.2017.02.005.

Article  Google Scholar 

Huang C-Y, Chu T-C, Lin S-Y, Lin J-P, Hsieh C-Y. Accuracy of the convolution/superposition dose calculation algorithm at the condition of electron disequilibrium. Appl Radiat Isot. 2002;57:825?30. https://doi.org/10.1016/s0969-8043(02)00228-2.

Article  Google Scholar 

Jacques R, McNutt T. An improved method of heterogeneity compensation for the convolution/superposition algorithm. J Phys Conf Ser. 2014;489:012019. https://doi.org/10.1088/1742-6596/489/1/012019.

Article  Google Scholar 

Aspradakis MM, Morrison RH, Richmond ND, Steele A. Experimental verification of convolution/superposition photon dose calculations for radiotherapy treatment planning. Phys Med Biol. 2003;48:2873?93. https://doi.org/10.1088/0031-9155/48/17/309.

Article  Google Scholar 

Bertolet A, Wehrenberg-Klee E, Bobi? M, Grassberger C, Perl J, Paganetti H, et al. Pre- and post-treatment image-based dosimetry in 90Y-microsphere radioembolization using the TOPAS Monte Carlo toolkit. Phys Med Biol. 2021. https://doi.org/10.1088/1361-6560/ac43fd.

Article  Google Scholar 

Koblinger L, Zarand P. Monte Carlo calculations on chest X-ray examinations for the determination of the absorbed dose and image quality. Phys Med Biol. 1973;18:518?31. https://doi.org/10.1088/0031-9155/18/4/004.

Article  Google Scholar 

Correa SCA, Souza EM, Silva AX, Lopes RT, Yoriyaz H. Dose?image quality study in digital chest radiography using Monte Carlo simulation. Appl Radiat Isot. 2008;66:1213?7. https://doi.org/10.1016/j.apradiso.2008.01.009.

Article  Google Scholar 

留言 (0)

沒有登入
gif