Recent advances in shape memory scaffolds and regenerative outcomes

Stevens MM, George JH. Exploring and engineering the cell surface interface. Science. 2005;310(5751):1135–8.

Article  Google Scholar 

Adamo L, et al. Biomechanical forces promote embryonic haematopoiesis. Nature. 2009;459(7250):1131–5.

Article  Google Scholar 

Moeendarbary E, Harris AR. Cell mechanics: principles, practices, and prospects. Wiley Interdisc Rev: Syst Biol Med. 2014;6(5):371–88.

Google Scholar 

De Maria C, De Acutis A, Vozzi G. Indirect rapid prototyping for tissue engineering. In: Essentials of 3D biofabrication and translation. Amsterdam: Elsevier; 2015. p. 153–64.

Chapter  Google Scholar 

Barhouse PS, Andrade MJ, Smith Q. Home away from home: bioengineering advancements to mimic the developmental and adult stem cell niche. Front Chem Eng. 2022;4: 832754.

Article  Google Scholar 

Chen Y, et al. Measuring collective cell movement and extracellular matrix interactions using magnetic resonance imaging. Sci Rep. 2013;3(1):1879.

Article  Google Scholar 

Mohammed D, et al. Innovative tools for mechanobiology: unraveling outside-in and inside-out mechanotransduction. Front Bioeng Biotechnol. 2019;7:162.

Article  Google Scholar 

Vining KH, Stafford A, Mooney DJ. Sequential modes of crosslinking tune viscoelasticity of cell-instructive hydrogels. Biomaterials. 2019;188:187–97.

Article  Google Scholar 

Charrier EE, et al. Control of cell morphology and differentiation by substrates with independently tunable elasticity and viscous dissipation. Nat Commun. 2018;9(1):449.

Article  Google Scholar 

Zare M, Davoodi P, Ramakrishna S. Electrospun shape memory polymer micro-/nanofibers and tailoring their roles for biomedical applications. Nanomaterials. 2021;11(4):933.

Article  Google Scholar 

Uto K, et al. Dynamically tunable cell culture platforms for tissue engineering and mechanobiology. Prog Polym Sci. 2017;65:53–82.

Article  Google Scholar 

Leng J, et al. Shape-memory polymers and their composites: stimulus methods and applications. Prog Mater Sci. 2011;56(7):1077–135.

Article  Google Scholar 

Sun L, et al. A brief review of the shape memory phenomena in polymers and their typical sensor applications. Polymers. 2019;11(6):1049.

Article  Google Scholar 

Bellin I, Kelch S, Lendlein A. Dual-shape properties of triple-shape polymer networks with crystallizable network segments and grafted side chains. J Mater Chem. 2007;17(28):2885–91.

Article  Google Scholar 

Zende R, Ghase V, Jamdar V. A review on shape memory polymers. Polym-Plast Technol Materials. 2023;62(4):467–85.

Article  Google Scholar 

Jamil H, et al. Recent advances in polymer nanocomposites: unveiling the frontier of shape memory and self-healing properties—a comprehensive review. Molecules. 2024;29(6):1267.

Article  Google Scholar 

Pisani S, et al. Shape-memory polymers hallmarks and their biomedical applications in the form of nanofibers. Int J Mol Sci. 2022;23(3):1290.

Article  Google Scholar 

Peng M, et al. Reconfigurable scaffolds for adaptive tissue regeneration. Nanoscale. 2023;15(13):6105–20.

Article  Google Scholar 

Ebara M, et al. Focus on the interlude between topographic transition and cell response on shape-memory surfaces. Polymer. 2014;55(23):5961–8.

Article  Google Scholar 

Grevesse T, et al. A simple route to functionalize polyacrylamide hydrogels for the independent tuning of mechanotransduction cues. Lab Chip. 2013;13(5):777–80.

Article  Google Scholar 

Montgomery M, et al. Flexible shape-memory scaffold for minimally invasive delivery of functional tissues. Nat Mater. 2017;16(10):1038–46.

Article  Google Scholar 

Zhang D, et al. A bioactive “self-fitting” shape memory polymer scaffold with potential to treat cranio-maxillo facial bone defects. Acta Biomater. 2014;10(11):4597–605.

Article  Google Scholar 

Sun L, et al. Advances in physiologically relevant actuation of shape memory polymers for biomedical applications. Polym Rev. 2021;61(2):280–318.

Article  Google Scholar 

Deng Z, et al. Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation. Acta Biomater. 2016;46:234–44.

Article  Google Scholar 

Pina S, et al. Scaffolding strategies for tissue engineering and regenerative medicine applications. Materials. 2019;12(11):1824.

Article  Google Scholar 

Hama R, et al. Recent tissue engineering approaches to mimicking the extracellular matrix structure for skin regeneration. Biomimetics. 2023;8(1):130.

Article  Google Scholar 

Zulkifli Z, et al. Shape memory poly (glycerol sebacate)-based electrospun fiber scaffolds for tissue engineering applications: a review. J Appl Polym Sci. 2022;139(22):52272.

Article  Google Scholar 

Wang J, et al. Shape memory activation can affect cell seeding of shape memory polymer scaffolds designed for tissue engineering and regenerative medicine. J Mater Sci Mater Med. 2017;28:1–9.

Article  Google Scholar 

Li T, et al. The current status, prospects, and challenges of shape memory polymers application in bone tissue engineering. Polymers. 2023;15(3):556.

Article  Google Scholar 

Wang C, et al. Advanced reconfigurable scaffolds fabricated by 4D printing for treating critical-size bone defects of irregular shapes. Biofabrication. 2020;12(4): 045025.

Article  Google Scholar 

Tseng L-F, Mather PT, Henderson JH. Shape-memory-actuated change in scaffold fiber alignment directs stem cell morphology. Acta Biomater. 2013;9(11):8790–801.

Article  Google Scholar 

Pfau MR, Grunlan MA. Smart scaffolds: shape memory polymers (SMPs) in tissue engineering. J Materials Chem B. 2021;9(21):4287–97.

Article  Google Scholar 

Neuss S, et al. The use of a shape-memory poly (ε-caprolactone) dimethacrylate network as a tissue engineering scaffold. Biomaterials. 2009;30(9):1697–705.

Article  Google Scholar 

Lam MT, Clem WC, Takayama S. Reversible on-demand cell alignment using reconfigurable microtopography. Biomaterials. 2008;29(11):1705–12.

Article  Google Scholar 

Chan EW, Yousaf MN. A photo-electroactive surface strategy for immobilizing ligands in patterns and gradients for studies of cell polarization. Mol BioSyst. 2008;4(7):746–53.

Article  Google Scholar 

Dogan S, et al. Thermally induced shape memory behavior, enzymatic degradation and biocompatibility of PLA/TPU blends: effects of compatibilization. J Mech Behav Biomed Mater. 2017;71:349–61.

Article  Google Scholar 

Kantaros A, Ganetsos T. From static to dynamic: smart materials pioneering additive manufacturing in regenerative medicine. Int J Mol Sci. 2023;24(21):15748.

Article  Google Scholar 

Ramaraju H, et al. Designing biodegradable shape memory polymers for tissue repair. Adv Func Mater. 2020;30(44):2002014.

Article  Google Scholar 

Du C, et al. Shape memory polymer foams with phenolic acid-based antioxidant and antimicrobial properties for traumatic wound healing. Front Bioeng Biotechnol. 2022;10: 809361.

Article  Google Scholar 

Chen J, et al. Cell-responsive shape memory polymers. ACS Biomater Sci Eng. 2022;8(7):2960–9.

Article  Google Scholar 

Gong T, et al. The control of mesenchymal stem cell differentiation using dynamically tunable surface microgrooves. Adv Healthcare Mater. 2014;3(10):1608–19.

Article  Google Scholar 

Shimoboji T, et al. Temperature-induced switching of enzyme activity with smart polymer-enzyme conjugates. Bioconjug Chem. 2003;14(3):517–25.

Article  Google Scholar 

Buffington SL, et al. Enzymatically triggered shape memory polymers. Acta Biomater. 2019;84:88–97.

Article  Google Scholar 

Zhao W, et al. Research progress of shape memory polymer and 4D printing in biomedical application. Adv Healthcare Mater. 2023;12(16):2201975.

Article  Google Scholar 

Zhao Q, et al. Programmed shape-morphing scaffolds enabling facile 3D endothelialization. Adv Func Mater. 2018;28(29):1801027.

Article  Google Scholar 

Vakil AU, et al. Biostable shape memory polymer foams for smart biomaterial applications. Polymers. 2021;13(23):4084.

Article  Google Scholar 

Shaabani A, et al. Self-healable conductive polyurethane with the body temperature-responsive shape memory for bone tissue engineering. Chem Eng J. 2021;411: 128449.

Article  Google Scholar 

Flégeau K, et al. Toward the development of biomimetic injectable and macroporous biohydrogels for regenerative medicine. Adv Coll Interface Sci. 2017;247:589–609.

留言 (0)

沒有登入
gif