Mechanism of autocatalytic activation during proteasome assembly

Jäger, S., Groll, M., Huber, R., Wolf, D. H. & Heinemeyer, W. Proteasome beta-type subunits: unequal roles of propeptides in core particle maturation and a hierarchy of active site function. J. Mol. Biol. 291, 997–1013 (1999).

Article  PubMed  Google Scholar 

Schnell, H. M., Walsh, R. M., Rawson, S. & Hanna, J. Chaperone-mediated assembly of the proteasome core particle – recent developments and structural insights. J. Cell Sci. 135, jcs259622 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Watanabe, A., Yashiroda, H., Ishihara, S., Lo, M. & Murata, S. The molecular mechanisms governing the assembly of the immuno- and thymoproteasomes in the presence of constitutive proteasomes. Cells 11, 1580 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, P. & Hochstrasser, M. Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly. Cell 86, 961–972 (1996).

Article  CAS  PubMed  Google Scholar 

Hirano, Y. et al. Dissecting beta-ring assembly pathway of the mammalian 20S proteasome. EMBO J. 27, 2204–2213 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schnell, H. M. et al. Structures of chaperone-associated assembly intermediates reveal coordinated mechanisms of proteasome biogenesis. Nat. Struct. Mol. Biol. 28, 418–425 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seemüller, E., Lupas, A. & Baumeister, W. Autocatalytic processing of the 20S proteasome. Nature 382, 468–470 (1996).

Article  PubMed  Google Scholar 

Huber, E. M. et al. A unified mechanism for proteolysis and autocatalytic activation in the 20S proteasome. Nat. Commun. 7, 10900 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Groll, M. et al. Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature 386, 463–471 (1997).

Article  CAS  PubMed  Google Scholar 

Ramos, P. C., Marques, A. J., London, M. K. & Dohmen, R. J. Role of C-terminal extensions of subunits beta2 and beta7 in assembly and activity of eukaryotic proteasomes. J. Biol. Chem. 279, 14323–14330 (2004).

Article  CAS  PubMed  Google Scholar 

Walsh, R. M. et al. Structure of the preholoproteasome reveals late steps in proteasome core particle biogenesis. Nat. Struct. Mol. Biol. 30, 1516–1524 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Gerlinger, U. M., Gückel, R., Hoffmann, M., Wolf, D. H. & Hilt, W. Yeast cycloheximide-resistant crl mutants are proteasome mutants defective in protein degradation. Mol. Biol. Cell 8, 2487–2499 (1997).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kock, M. et al. Proteasome assembly from 15S precursors involves major conformational changes and recycling of the Pba1–Pba2 chaperone. Nat. Commun. 6, 6123 (2015).

Article  CAS  PubMed  Google Scholar 

Li, X., Li, Y., Arendt, C. S. & Hochstrasser, M. Distinct elements in the proteasomal β5 subunit propeptide required for autocatalytic processing and proteasome assembly. J. Biol. Chem. 291, 1991–2003 (2016).

Article  CAS  PubMed  Google Scholar 

Xie, Y. & Varshavsky, A. RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a negative feedback circuit. Proc. Natl Acad. Sci. USA 98, 3056–3061 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guerra-Moreno, A. & Hanna, J. Induction of proteotoxic stress by the mycotoxin patulin. Toxicol. Lett. 276, 85–91 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramos, P. C., Höckendorff, J., Johnson, E. S., Varshavsky, A. & Dohmen, R. J. Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly. Cell 92, 489–499 (1998).

Article  CAS  PubMed  Google Scholar 

Marques, A. J., Glanemann, C., Ramos, P. C. & Dohmen, R. J. The C-terminal extension of the beta7 subunit and activator complexes stabilize nascent 20S proteasomes and promote their maturation. J. Biol. Chem. 282, 34869–34876 (2007).

Article  CAS  PubMed  Google Scholar 

Arendt, C. S. & Hochstrasser, M. Eukaryotic 20S proteasome catalytic subunit propeptides prevent active site inactivation by N-terminal acetylation and promote particle assembly. EMBO J. 18, 3575–3585 (1999).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matias, A. C., Matos, J., Dohmen, R. J. & Ramos, P. C. Hsp70 and Hsp110 chaperones promote early steps of proteasome assembly. Biomolecules 13, 11 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Khan, A. R. & James, M. N. Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Sci. 7, 815–836 (1998).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Richter, C., Tanaka, T. & Yada, R. Y. Mechanism of activation of the gastric aspartic proteinases: pepsinogen, progastricsin and prochymosin. Biochem. J. 335, 481–490 (1998).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arolas, J. L., Goulas, T., Cuppari, A. & Gomis-Rüth, F. X. Multiple architectures and mechanisms of latency in metallopeptidase zymogens. Chem. Rev. 118, 5581–5597 (2018).

Article  CAS  PubMed  Google Scholar 

Poli, M. C. et al. Heterozygous truncating variants in POMP escape nonsense-mediated decay and cause a unique immune dysregulatory syndrome. Am. J. Hum. Genet. 102, 1126–1142 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Jesus, A. A. et al. Novel proteasome assembly chaperone mutations in PSMG2/PAC2 cause the autoinflammatory interferonopathy CANDLE/PRAAS4. J. Allergy Clin. Immunol. 143, 1939–1943.e8 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Dahlqvist, J. et al. A single-nucleotide deletion in the POMP 5′ UTR causes a transcriptional switch and altered epidermal proteasome distribution in KLICK genodermatosis. Am. J. Hum. Genet. 86, 596–603 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ansar, M. et al. Biallelic variants in PSMB1 encoding the proteasome subunit β6 cause impairment of proteasome function, microcephaly, intellectual disability, developmental delay and short stature. Hum. Mol. Genet. 29, 1132–1143 (2020).

Article  CAS  PubMed  Google Scholar 

Hwang, G.-W., Ishida, Y. & Naganuma, A. Identification of F-box proteins that are involved in resistance to methylmercury in Saccharomyces cerevisiae. FEBS Lett. 580, 6813–6818 (2006).

Article  CAS  PubMed  Google Scholar 

Wani, P. S., Rowland, M. A., Ondracek, A., Deeds, E. J. & Roelofs, J. Maturation of the proteasome core particle induces an affinity switch that controls regulatory particle association. Nat. Commun. 6, 6384 (2015).

Article  CAS  PubMed  Google Scholar 

Weisshaar, N., Welsch, H., Guerra-Moreno, A. & Hanna, J. Phospholipase Lpl1 links lipid droplet function with quality control protein degradation. Mol. Biol. Cell 28, 716–725 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

Article  PubMed  Google Scholar 

Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Wagner, T. et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2, 218 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif