Influence of combined abiotic/biotic factors on decay of P. aeruginosa and E. coli in Rhine River water

Ahmed W, Toze S, Veal C, Fisher P, Zhang Q, Zhu Z, Staley C, Sadowsky MJ (2021) Comparative decay of culturable faecal indicator bacteria, microbial source tracking marker genes, and enteric pathogens in laboratory microcosms that mimic a sub-tropical environment. Sci Total Environ 751:141475. https://doi.org/10.1016/j.scitotenv.2020.141475

Article  CAS  PubMed  Google Scholar 

Atlas RM, Bartha R (1998) Microbial ecology: fundamentals and applications. Microb Evol Biodivers

Google Scholar 

Aw T (2019) Environmental aspects and features of critical pathogen groups. In: Michigan State University, Rose JB, Jiménez Cisneros B, UNESCO - International Hydrological Programme (eds) Water and Sanitation for the 21st Century: Health and Microbiological Aspects of Excreta and Wastewater Management (Global Water Pathogen Project). Michigan State University

Google Scholar 

Bailey ES, Casanova LM, Sobsey MD (2019) Effects of environmental storage conditions on survival of indicator organisms in a blend of surface water and dual disinfected reclaimed water. J Appl Microbiol 126:985–994

Article  CAS  PubMed  Google Scholar 

Barcina I, Arana I, Iriberri J, Egea L (1986) Influence of light and natural microbiota of the Butrón river on E. coli survival. Antonie van Leeuwenhoek 52(6):555–566. https://doi.org/10.1007/BF00423416

Article  CAS  PubMed  Google Scholar 

Bogosian G, Sammons LE, Morris PJ, O’Neil JP, Heitkamp MA, Weber DB (1996) Death of the Escherichia coli K-12 strain W3110 in soil and water. Appl Environ Microbiol 62:4114–4120. https://doi.org/10.1128/aem.62.11.4114-4120.1996

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bomo A-M, Tryland I, Haande S, Hagman C, Utkilen H (2011) The impact of cyanobacteria on growth and death of opportunistic pathogenic bacteria. Water Sci Technol J Int Assoc Water Pollut Res 64:384–390. https://doi.org/10.2166/wst.2011.647

Article  Google Scholar 

Chick H (1908) An investigation of the laws of disinfection. J Hyg (Lond) 8:92–158. https://doi.org/10.1017/S0022172400006987

Article  CAS  PubMed  PubMed Central  Google Scholar 

Collier SA, Deng L, Adam EA, Benedict KM, Beshearse EM, Blackstock AJ, Bruce BB, Derado G, Edens C, Fullerton KE, Gargano JW, Geissler AL, Hall AJ, Havelaar AH, Hill VR, Hoekstra RM, Reddy SC, Scallan E, Stokes EK et al (2021) Estimate of burden and direct healthcare cost of infectious waterborne disease in the United States. Emerg Infect Dis 27:140–149. https://doi.org/10.3201/eid2701.190676

Article  PubMed  PubMed Central  Google Scholar 

Dean K, Mitchell J (2022) Identifying water quality and environmental factors that influence indicator and pathogen decay in natural surface waters. Water Res 211:118051

Article  CAS  PubMed  Google Scholar 

Delsman JR, Van Baaren ES, Siemon B, Dabekaussen W, Karaoulis MC, Pauw PS, Vermaas T, Bootsma H, De Louw PGB, Gunnink JL, Dubelaar CW, Menkovic A, Steuer A, Meyer U, Revil A, Oude Essink GHP (2018) Large-scale, probabilistic salinity mapping using airborne electromagnetics for groundwater management in Zeeland, the Netherlands. Environ Res Lett 13:084011. https://doi.org/10.1088/1748-9326/aad19e

Article  CAS  Google Scholar 

Directive EU (2006) 7/EC of the European Parliament and of the Council of 15 February 2006 concerning the management of bathing water quality and repealing Directive 76/160/EEC. Off J Eur Union 2013:L64

Google Scholar 

Gurijala KR, Alexander M (1990) Explanation for the decline of bacteria introduced into lake water. Microb Ecol 20:231–244. https://doi.org/10.1007/BF02543879

Article  CAS  PubMed  Google Scholar 

He Y, Sutton NB, Rijnaarts HHH, Langenhoff AAM (2016) Degradation of pharmaceuticals in wastewater using immobilized TiO2 photocatalysis under simulated solar irradiation. Appl Catal B Environ 182:132–141. https://doi.org/10.1016/j.apcatb.2015.09.015

Article  CAS  Google Scholar 

Hintaran AD, Kliffen SJ, Lodder W, Pijnacker R, Brandwagt D, van der Bij AK, Siedenburg E, Sonder GJB, Fanoy EB, Joosten RE (2018) Infection risks of city canal swimming events in the Netherlands in 2016. PLOS ONE 13:e0200616. https://doi.org/10.1371/journal.pone.0200616

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ibrahim EME, El-Liethy MA, Abia ALK, Hemdan BA, Shaheen MN (2019) Survival of E. coli O157: H7, Salmonella Typhimurium, HAdV2 and MNV-1 in river water under dark conditions and varying storage temperatures. Sci Total Environ 648:1297–1304

Article  CAS  PubMed  Google Scholar 

Januário AP, Afonso CN, Mendes S, Rodrigues MJ (2019) Faecal indicator bacteria and Pseudomonas aeruginosa in Marine Coastal Waters: is there a relationship? Pathogens 9:13. https://doi.org/10.3390/pathogens9010013

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jenkins MB, Fisher DS, Endale DM, Adams P (2011) Comparative die-off of Escherichia coli 0157: H7 and fecal indicator bacteria in pond water. Environ Sci Technol 45:1853–1858

Article  CAS  PubMed  Google Scholar 

Jiang J-G, Wu S-G, Shen Y-F (2007) Effects of seasonal succession and water pollution on the protozoan community structure in an eutrophic lake. Chemosphere 66:523–532. https://doi.org/10.1016/j.chemosphere.2006.05.042

Article  CAS  PubMed  Google Scholar 

Kaevska M, Videnska P, Sedlar K, Slana I (2016) Seasonal changes in microbial community composition in river water studied using 454-pyrosequencing. SpringerPlus 5:409. https://doi.org/10.1186/s40064-016-2043-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khan NH, Ahsan M, Taylor WD, Kogure K (2010) Culturability and survival of marine, freshwater and clinical Pseudomonas aeruginosa. Microbes Environ 25:266–274

Article  PubMed  Google Scholar 

Korajkic A, McMinn BR, Ashbolt NJ, Sivaganesan M, Harwood VJ, Shanks OC (2019a) Extended persistence of general and cattle-associated fecal indicators in marine and freshwater environment. Sci Total Environ 650:1292–1302. https://doi.org/10.1016/j.scitotenv.2018.09.108

Article  CAS  PubMed  Google Scholar 

Korajkic A, McMinn BR, Harwood VJ (2018) Relationships between microbial indicators and pathogens in recreational water settings. Int J Environ Res Public Health 15:2842

Article  CAS  PubMed  PubMed Central  Google Scholar 

Korajkic A, McMinn BR, Shanks OC, Sivaganesan M, Fout GS, Ashbolt NJ (2014) Biotic interactions and sunlight affect persistence of fecal indicator bacteria and microbial source tracking genetic markers in the Upper Mississippi River. Appl Environ Microbiol 80:3952–3961. https://doi.org/10.1128/AEM.00388-14

Article  CAS  PubMed  PubMed Central  Google Scholar 

Korajkic A, Wanjugi P, Brooks L, Cao Y, Harwood VJ (2019b) Persistence and decay of fecal microbiota in aquatic habitats. Microbiol Mol Biol Rev 83:e00005–e00019. https://doi.org/10.1128/MMBR.00005-19

Article  CAS  PubMed  PubMed Central  Google Scholar 

Korajkic A, Wanjugi P, Harwood VJ (2013) Indigenous microbiota and habitat influence Escherichia coli survival more than sunlight in simulated aquatic environments. Appl Environ Microbiol 79:5329–5337

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liang L, Goh SG, Gin KYH (2017) Decay kinetics of microbial source tracking (MST) markers and human adenovirus under the effects of sunlight and salinity. Sci Total Environ 574:165–175. https://doi.org/10.1016/j.scitotenv.2016.09.031

Article  CAS  Google Scholar 

Mariño FJ, Moriñigo MA, Martinez-Manzanares E (1994) Borrego JJ (1995) Microbiological-epidemiological study of selected marine beaches in Malaga (Spain). Health-Relat Water Microbiol 31:5–9. https://doi.org/10.1016/0273-1223(95)00232-C

Article  Google Scholar 

Mates A (1992) The significance of testing for Pseudomonas aeruginosa in recreational seawater beaches. Microbios 71:89–93

CAS  PubMed  Google Scholar 

Medema GJ, Bahar M, Schets FM (1997) Survival of Cryptosporidium parvum, Escherichia coli, faecal enterococci and Clostridium perfringens in river water: influence of temperature and autochthonous microorganisms. Water Sci Technol 35:249–252

Article  CAS  Google Scholar 

Mena KD, Gerba CP (2009) Risk assessment of Pseudomonas aeruginosa in water. In: Whitacre DM (ed) Reviews of Environmental Contamination and Toxicology, vol 201. Springer, US, Boston, MA, pp 71–115

Google Scholar 

Menon P, Billen G, Servais P (2003) Mortality rates of autochthonous and fecal bacteria in natural aquatic ecosystems. Water Res 37:4151–4158

Article  CAS  PubMed  Google Scholar 

Mohammed RL, Echeverry A, Stinson CM, Green M, Bonilla TD, Hartz A, McCorquodale DS, Rogerson A, Esiobu N (2012) Survival trends of Staphylococcus aureus, Pseudomonas aeruginosa, and Clostridium perfringens in a sandy South Florida beach. Mar Pollut Bull 64:1201–1209. https://doi.org/10.1016/j.marpolbul.2012.03.010

Article  CAS  PubMed  Google Scholar 

Nelson KL, Boehm AB, Davies-Colley RJ, Dodd MC, Kohn T, Linden KG, Liu Y, Maraccini PA, McNeill K, Mitch WA (2018) Sunlight-mediated inactivation of health-relevant microorganisms in water: a review of mechanisms and modeling approaches. Environ Sci Process Impacts 20:1089–1122

Article  CAS  PubMed  PubMed Central  Google Scholar 

Noble RT, Lee IM, Schiff KC (2004) Inactivation of indicator micro-organisms from various sources of faecal contamination in seawater and freshwater. J Appl Microbiol 96:464–472

Article  CAS  PubMed  Google Scholar 

Okabe S, Shimazu Y (2007) Persistence of host-specific Bacteroides–Prevotella 16S rRNA genetic markers in environmental waters: effects of temperature and salinity. Appl Microbiol Biotechnol 76:935–944.

留言 (0)

沒有登入
gif