Fascin-1 limits myosin activity in microglia to control mechanical characterization of the injured spinal cord

Cowan H, Lakra C, Desai M. Autonomic dysreflexia in spinal cord injury. BMJ. 2020: m3596.

Tran AP, Warren PM, Silver J. The Biology of Regeneration failure and success after spinal cord Injury. Physiol Rev. 2018;98:881–917.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clifford T, Finkel Z, Rodriguez B, Joseph A, Cai L. Current advancements in spinal cord Injury Research—glial scar formation and neural regeneration. Cells. 2023;12:853.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anderson MA, Burda JE, Ren Y, Ao Y, O’Shea TM, Kawaguchi R, et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature. 2016;532:195–200.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Varadarajan SG, Hunyara JL, Hamilton NR, Kolodkin AL, Huberman AD. Central nervous system regeneration. Cell. 2022;185:77–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muramatsu R, Yamashita T. Concept and molecular basis of axonal regeneration after central nervous system injury. Neurosci Res. 2014;78:45–9.

Article  CAS  PubMed  Google Scholar 

Fletcher DA, Mullins RD. Cell mechanics and the cytoskeleton. Nature. 2010;463:485–92.

Article  CAS  PubMed  PubMed Central  Google Scholar 

TYLER WJ. The mechanobiology of brain function. Nat Rev Neurosci. 2012;13:867–78.

Article  PubMed  Google Scholar 

Franze K, Janmey PA, Guck J. Mechanics in neuronal development and repair. Annu Rev Biomed Eng. 2013;15:227–51.

Article  CAS  PubMed  Google Scholar 

Saxena T, Gilbert J, Stelzner D, Hasenwinkel J. Mechanical characterization of the injured spinal cord after lateral spinal hemisection injury in the rat. J Neurotrauma. 2012;29:1747–57.

Article  PubMed  Google Scholar 

Moeendarbary E, Weber IP, Sheridan GK, Koser DE, Soleman S, Haenzi B, et al. The soft mechanical signature of glial scars in the central nervous system. Nat Commun. 2017;8:14787.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Flanagan LA, Ju YE, Marg B, Osterfield M, Janmey PA. Neurite branching on deformable substrates. NeuroReport. 2002;13:2411–5.

Article  PubMed  PubMed Central  Google Scholar 

Bellver-Landete V, Bretheau F, Mailhot B, Vallières N, Lessard M, Janelle M, et al. Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. Nat Commun. 2019;10:518.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akhmetzyanova E, Kletenkov K, Mukhamedshina Y, Rizvanov A. Different approaches to modulation of Microglia Phenotypes after spinal cord Injury. Front Syst Neurosci. 2019;13:37.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akhmetzyanova ER, Zhuravleva MN, Timofeeva AV, Tazetdinova LG, Garanina EE, Rizvanov AA, et al. Severity- and Time-Dependent activation of Microglia in spinal cord Injury. Int J Mol Sci. 2023;24:8294.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saishin Y, Shimada S, Morimura H, Sato K, Ishimoto I, Tano Y, et al. Isolation of a cDNA encoding a photoreceptor cell-specific actin-bundling protein: retinal fascin. FEBS Lett. 1997;414:381–6.

Article  CAS  PubMed  Google Scholar 

Tubb B, Mulholland DJ, Vogl W, Lan Z, Niederberger C, Cooney A, et al. Testis Fascin (FSCN3): a Novel Paralog of the actin-bundling protein fascin expressed specifically in the Elongate Spermatid Head. Exp Cell Res. 2002;275:92–109.

Article  CAS  PubMed  Google Scholar 

Yu S, Cheng L, Tian D, Li Z, Yao F, Luo Y, et al. Fascin-1 is highly expressed specifically in Microglia after spinal cord Injury and regulates Microglial Migration. Front Pharmacol. 2021;12:729524.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lamb MC, Kaluarachchi CP, Lansakara TI, Mellentine SQ, Lan Y, Tivanski AV et al. Fascin limits myosin activity within Drosophila border cells to control substrate stiffness and promote migration. Elife. 2021;10.

Yao F, Luo Y, Liu Y, Chen Y, Li Y, Hu X et al. Imatinib inhibits pericyte-fibroblast transition and inflammation and promotes axon regeneration by blocking the PDGF-BB/PDGFRβ pathway in spinal cord injury. Inflamm Regen. 2022;42.

Koser DE, Moeendarbary E, Hanne J, Kuerten S, Franze K. CNS cell distribution and Axon Orientation Determine local spinal cord Mechanical Properties. Biophys J. 2015;108:2137–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin DC, Shreiber DI, Dimitriadis EK, Horkay F. Spherical indentation of soft matter beyond the Hertzian regime: numerical and experimental validation of hyperelastic models. Biomech Model Mechanobiol. 2009;8:345–58.

Article  PubMed  Google Scholar 

Zhang M, Zheng YP, Mak AF. Estimating the effective Young’s modulus of soft tissues from indentation tests–nonlinear finite element analysis of effects of friction and large deformation. Med Eng Phys. 1997;19:512–7.

Article  CAS  PubMed  Google Scholar 

Liu F, Mih JD, Shea BS, Kho AT, Sharif AS, Tager AM, et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J Cell Biol. 2010;190:693–706.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tse JR, Engler AJ. Preparation of Hydrogel Substrates with Tunable Mechanical properties. Curr Protocols Cell Biology. 2010;47.

Hu J, Chen Q, Zhu H, Hou L, Liu W, Yang Q, et al. Microglial Piezo1 senses Aβ fibril stiffness to restrict Alzheimer’s disease. Neuron. 2023;111:15–29.

Article  CAS  PubMed  Google Scholar 

Basso DM, Fisher LC, Anderson AJ, Jakeman LB, McTigue DM, Popovich PG. Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J Neurotrauma. 2006;23:635–59.

Article  PubMed  Google Scholar 

Li Y, He X, Kawaguchi R, Zhang Y, Wang Q, Monavarfeshani A, et al. Microglia-organized scar-free spinal cord repair in neonatal mice. Nat (London). 2020;587:613–8.

Article  CAS  Google Scholar 

Wang X, Cao K, Sun X, Chen Y, Duan Z, Sun L, et al. Macrophages in spinal cord injury: phenotypic and functional change from exposure to myelin debris. Glia. 2015;63:635–51.

Article  PubMed  Google Scholar 

Jin C, Zhu R, Wang Z, Li Y, Ni H, Xu M, et al. Dynamic changes in mechanical properties of the adult rat spinal cord after injury. Acta Biomater. 2023;155:436–48.

Article  PubMed  Google Scholar 

Riquelme MA, Cardenas ER, Xu H, Jiang JX. The role of Connexin Channels in the response of mechanical loading and unloading of bone. Int J Mol Sci. 2020;21.

Sánchez OF, Rodríguez AV, Velasco-España JM, Murillo LC, Sutachan J, Albarracin S. Role of Connexins 30, 36, and 43 in Brain tumors, neurodegenerative diseases, and Neuroprotection. Volume 9. Basel, Switzerland: Cells; 2020. p. 846.

Google Scholar 

Zhang C, Yan Z, Maknojia A, Riquelme MA, Gu S, Booher G et al. Inhibition of astrocyte hemichannel improves recovery from spinal cord injury. JCI Insight. 2021;6.

Kim Y, Davidson JO, Gunn KC, Phillips AR, Green CR, Gunn AJ. Role of Hemichannels in CNS inflammation and the Inflammasome Pathway. Adv Protein Chem Struct Biol. 2016;104:1–37.

Article  CAS  PubMed  Google Scholar 

Zhu Y, Lyapichev K, Lee DH, Motti D, Ferraro NM, Zhang Y, et al. Macrophage Transcriptional Profile identifies lipid catabolic pathways that can be therapeutically targeted after spinal cord Injury. J Neurosci. 2017;37:2362–76.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu X, Saito T, Saido TC, Barron AM, Ruedl C. Microglia and CD206(+) border-associated mouse macrophages maintain their embryonic origin during Alzheimer’s disease. Elife. 2021;10.

Gao H, Di J, Clausen BH, Wang N, Zhu X, Zhao T, et al. Distinct myeloid population phenotypes dependent on TREM2 expression levels shape the pathology of traumatic versus demyelinating CNS disorders. Cell Rep. 2023;42:112629.

Article  CAS  PubMed  Google Scholar 

Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol. 2009;10:778–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang L, Wen J, Luo W. Rho–associated kinase inhibitor, Y–27632, inhibits the invasion and proliferation of T24 and 5367 bladder cancer cells. Mol Med Rep. 2015;12:7526–30.

Article  CAS  PubMed  Google Scholar 

Kobayakawa K, Ohkawa Y, Yoshizaki S, Tamaru T, Saito T, Kijima K, et al. Macrophage centripetal migration drives spontaneous healing process after spinal cord injury. Sci Adv. 2019;5:eaav5086.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doyle AD, Sykora DJ, Pacheco GG, Kutys ML, Yamada KM. 3D mesenchymal cell migration is driven by anterior cellular contraction that generates an extracellular matrix prestrain. Dev Cell. 2021;56:826–41.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif