Increased endocytosis rate and enhanced lysosomal pathway of silica-coated superparamagnetic nanoparticles into M-HeLa cells compared with cultured primary motor neurons

Anderson KN, Potter AC, Piccenna LG et al. (2004) Isolation and culture of motor neurons from the newborn mouse spinal cord. Brain Res Protoc 12:132–136. https://doi.org/10.1016/j.brainresprot.2003.10.001

Article  Google Scholar 

Borkowska M, Siek M, Kolygina DV et al. (2020) Targeted crystallization of mixed-charge nanoparticles in lysosomes induces selective death of cancer cells. Nat Nanotechnol 15:331–341. https://doi.org/10.1038/s41565-020-0643-3

Article  CAS  PubMed  Google Scholar 

Boulting GL, Kiskinis E, Croft GF et al. (2011) A functionally characterized test set of human induced pluripotent stem cells. Nat Biotechnol 29:279. https://doi.org/10.1038/NBT.1783

Article  CAS  PubMed  PubMed Central  Google Scholar 

Busch W, Bastian S, Trahorsch U et al. (2011) Internalisation of engineered nanoparticles into mammalian cells in vitro: Influence of cell type and particle properties. J Nanoparticle Res 13:293–310. https://doi.org/10.1007/s11051-010-0030-3

Article  CAS  Google Scholar 

Cartiera MS, Johnson KM, Rajendran V et al. (2009) The uptake and intracellular fate of PLGA nanoparticles in epithelial cells. Biomaterials 30:2790–2798. https://doi.org/10.1016/j.biomaterials.2009.01.057

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cenev Z, Zhang H, Sariola V et al. (2018) Manipulating superparamagnetic microparticles with an electromagnetic needle. Adv Mater Technol 3:1700177. https://doi.org/10.1002/admt.201700177

Article  CAS  Google Scholar 

Chung CY-S, Li SP-Y, Louie M-W et al. (2013) Induced self-assembly and disassembly of water-soluble alkynylplatinum(ii) terpyridyl complexes with “switchable” near-infrared (NIR) emission modulated by metal–metal interactions over physiological pH: demonstration of pH-responsive NIR luminescent prob. Chem Sci 4:2453. https://doi.org/10.1039/c3sc50196e

Article  CAS  Google Scholar 

Dausend J, Musyanovych A, Dass M et al. (2008) Uptake mechanism of oppositely charged fluorescent nanoparticles in HeLa cells. Macromol Biosci 8:1135–1143. https://doi.org/10.1002/mabi.200800123

Article  CAS  PubMed  Google Scholar 

Davis-Dusenbery BN, Williams LA, Klim JR, Eggan K (2014) How to make spinal motor neurons. Development 141:491–501. https://doi.org/10.1242/DEV.097410

Article  CAS  PubMed  Google Scholar 

Deatsch AE, Evans BA (2013) Heating efficiency in magnetic nanoparticle hyperthermia. J Magn Magn Mater 354:163–172. https://doi.org/10.1016/j.jmmm.2013.11.006

Article  CAS  Google Scholar 

Dobson J (2008) Remote control of cellular behaviour with magnetic nanoparticles. Nat Nanotechnol 3:139–143. https://doi.org/10.1038/nnano.2008.39

Article  CAS  PubMed  Google Scholar 

Douglas KL, Piccirillo CA, Tabrizian M (2008) Cell line-dependent internalization pathways and intracellular trafficking determine transfection efficiency of nanoparticle vectors. Eur J Pharm Biopharm 68:676–687. https://doi.org/10.1016/j.ejpb.2007.09.002

Article  CAS  PubMed  Google Scholar 

Elistratova JG, Mikhaylov MA, Sukhikh TS et al. (2021) Anticancer potential of hexamolybdenum clusters [(L)6]2− (L = CF3COO− and C6F5COO−) incorporated into different nanoparticulate forms. J Mol Liq 343:117601. https://doi.org/10.1016/j.molliq.2021.117601

Article  CAS  Google Scholar 

Fedorenko S, Stepanov A, Sibgatullina G et al. (2019) Fluorescent magnetic nanoparticles for modulating the level of intracellular Ca2+ in motoneurons. Nanoscale 11:16103–16113. https://doi.org/10.1039/c9nr05071j

Article  CAS  PubMed  Google Scholar 

Fedorenko S, Stepanov A, Bochkova O et al. (2023) Specific nanoarchitecture of silica nanoparticles codoped with the oppositely charged Mn2+ and Ru2+ complexes for dual paramagnetic-luminescent contrasting effects. Nanomedicine Nanotechnology, Biol Med 49:102665. https://doi.org/10.1016/j.nano.2023.102665

Article  CAS  Google Scholar 

Gratton SEA, Ropp PA, Pohlhaus PD et al. (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A 105:11613–11618. https://doi.org/10.1073/pnas.0801763105

Article  PubMed  PubMed Central  Google Scholar 

Gupta N, Gupta C, Bohidar HB (2023) Visible laser light mediated cancer therapy via photothermal effect of tannin-stabilized magnetic iron oxide nanoparticles. Nanomaterials 13:1456. https://doi.org/10.3390/nano13091456

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hao X, Wu J, Shan Y et al. (2012) Caveolae-mediated endocytosis of biocompatible gold nanoparticles in living Hela cells. J Phys Condens Matter. https://doi.org/10.1088/0953-8984/24/16/164207

Article  PubMed  Google Scholar 

Hayer A, Stoeber M, Ritz D et al. (2010) Caveolin-1 is ubiquitinated and targeted to intralumenal vesicles in endolysosomes for degradation. J Cell Biol 191:615–629. https://doi.org/10.1083/jcb.201003086

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hufnagel H, Hakim P, Lima A, Hollfelder F (2009) Fluid phase endocytosis contributes to transfection of DNA by PEI-25. Mol Ther J Am Soc Gene Ther 17:1411. https://doi.org/10.1038/MT.2009.121

Article  CAS  Google Scholar 

Indoliya A, Poddar R (2023) Hyperthermic treatment by superparamagnetic iron oxide nanoparticles for targeted tumor therapy: an in-vivo approach guided by swept-source optical coherence tomography. J Med Biol Eng 43:32–41. https://doi.org/10.1007/s40846-022-00769-6

Article  Google Scholar 

Ito A, Ino K, Hayashida M et al. (2005) Novel methodology for fabrication of tissue-engineered tubular constructs using magnetite nanoparticles and magnetic force. Tissue Eng 11:1553–1561. https://doi.org/10.1089/ten.2005.11.1553

Article  CAS  PubMed  Google Scholar 

Iturrioz-Rodríguez N, Correa-Duarte MÁ, Valiente R, Fanarraga ML (2020) Engineering sub-cellular targeting strategies to enhance safe cytosolic silica particle dissolution in cells. Pharmaceutics. https://doi.org/10.3390/pharmaceutics12060487

Article  PubMed  PubMed Central  Google Scholar 

Johannsen M, Thiesen B, Jordan A et al. (2005) Magnetic fluid hyperthermia (MFH) reduces prostate cancer growth in the orthotopic Dunning R3327 rat model. Prostate 64:283–292. https://doi.org/10.1002/pros.20213

Article  PubMed  Google Scholar 

Josephson L, Manuel Perez J, Weissleder R (2001) Magnetic nanosensors for the detection of oligonucleotide sequences. Angew Chemie - Int Ed 40:3204–3206. https://doi.org/10.1002/1521-3773(20010903)40:17%3c3204::AID-ANIE3204%3e3.0.CO;2-H

Article  CAS  Google Scholar 

Jung S, Bang M, Kim BS et al. (2014) Intracellular gold nanoparticles increase neuronal excitability and aggravate seizure activity in the mouse brain. PLoS ONE 9:e91360. https://doi.org/10.1371/journal.pone.0091360

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karumbayaram S, Novitch BG, Patterson M et al. (2009) Directed differentiation of human-induced pluripotent stem cells generates active motor neurons EMBRYONIC STEM CELLS/INDUCED PLURIPOTENT STEM CELLS directed differentiation of human-induced pluripotent stem cells generates active motor neurons. Stem Cells 27:806–811. https://doi.org/10.1002/stem.31

Article  CAS  PubMed  Google Scholar 

King JS, Kay RR (2019) The origins and evolution of macropinocytosis. Philos Trans R Soc B Biol Sci. https://doi.org/10.1098/rstb.2018.0158

Article  Google Scholar 

Ko MJ, Hong H, Choi H et al. (2022) Multifunctional magnetic nanoparticles for dynamic imaging and therapy. Adv NanoBiomed Res 2:2200053. https://doi.org/10.1002/ANBR.202200053

Article  CAS  Google Scholar 

Latorre M, Rinaldi C (2009) Applications of magnetic nanoparticles in medicine: magnetic fluid hyperthermia. P R Health Sci J 28:227–238

PubMed  Google Scholar 

Lojk J, Bregar VB, Rajh M et al. (2015) Cell type-specific response to high intracellular loading of polyacrylic acid-coated magnetic nanoparticles. Int J Nanomedicine 10:1449–1462. https://doi.org/10.2147/IJN.S76134

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lojk J, Bregar VB, Strojan K et al. (2018) Increased endocytosis of magnetic nanoparticles into cancerous urothelial cells versus normal urothelial cells. Histochem Cell Biol 149:45–59. https://doi.org/10.1007/s00418-017-1605-1

Article  CAS  PubMed  Google Scholar 

Lopez S, Hallali N, Lalatonne Y et al. (2022) Magneto-mechanical destruction of cancer-associated fibroblasts using ultra-small iron oxide nanoparticles and low frequency rotating magnetic fields. Nanoscale Adv 4:421–436. https://doi.org/10.1039/d1na00474c

Article  CAS  PubMed  Google Scholar 

Mäger I, Langel K, Lehto T et al. (2012) The role of endocytosis on the uptake kinetics of luciferin-conjugated cell-penetrating peptides. Biochim Biophys Acta - Biomembr 1818:502–511. https://doi.org/10.1016/J.BBAMEM.2011.11.020

Article  Google Scholar 

Maier-Hauff K, Ulrich F, Nestler D et al. (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103:317–324. https://doi.org/10.1007/s11060-010-0389-0

Article  PubMed  Google Scholar 

Malomouzh AI, Mukhitov AR, Proskurina SE et al. (2014) The effect of dynasore, a blocker of dynamin-dependent endocytosis, on spontaneous quantal and non-quantal release of acetylcholine in murine neuromuscular junctions. Dokl Biol Sci 459:330–333. https://doi.org/10.1134/S0012496614060052

留言 (0)

沒有登入
gif