A dual-targeting antifungal is effective against multidrug-resistant human fungal pathogens

Fukushima, K. et al. Supramolecular high-aspect ratio assemblies with strong antifungal activity. Nat. Commun. 4, 2861 (2013).

Article  PubMed  Google Scholar 

Pappas, P. G., Lionakis, M. S., Arendrup, M. C., Ostrosky-Zeichner, L. & Kullberg, B. J. Invasive candidiasis. Nat. Rev. Dis. Primers 4, 18026 (2018).

Article  PubMed  Google Scholar 

Kupferschmidt, K. New drugs target growing threat of fatal fungi. Science 366, 407 (2019).

Article  CAS  PubMed  Google Scholar 

Zhang, X. et al. Development of lipo-γ-AA peptides as potent antifungal agents. J. Med. Chem. 65, 8029–8039 (2022).

Article  CAS  PubMed  Google Scholar 

Fisher, M. C., Hawkins, N. J., Sanglard, D. & Gurr, S. J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 360, 739–742 (2018).

Article  CAS  PubMed  Google Scholar 

Zhang, F. et al. A marine microbiome antifungal targets urgent-threat drug-resistant fungi. Science 370, 974–978 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fisher, M. C. et al. Tackling the emerging threat of antifungal resistance to human health. Nat. Rev. Microbiol. 20, 557–571 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berman, J. & Krysan, D. J. Drug resistance and tolerance in fungi. Nat. Rev. Microbiol. 18, 319–331 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iyer, K. R., Revie, N. M., Fu, C., Robbins, N. & Cowen, L. E. Treatment strategies for cryptococcal infection: challenges, advances and future outlook. Nat. Rev. Microbiol. 19, 454–466 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lockhart, S. R., Chowdhary, A. & Gold, J. A. W. The rapid emergence of antifungal-resistant human-pathogenic fungi. Nat. Rev. Microbiol. 21, 818–832 (2023).

Article  CAS  PubMed  Google Scholar 

Day, J. N. et al. Combination antifungal therapy for cryptococcal meningitis. N. Engl. J. Med. 368, 1291–1302 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shekhar-Guturja, T. et al. Dual action antifungal small molecule modulates multidrug efflux and TOR signaling. Nat. Chem. Biol. 12, 867–875 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Theuretzbacher, U. Dual-mechanism antibiotics. Nat. Microbiol. 5, 984–985 (2020).

Article  CAS  PubMed  Google Scholar 

Silver, L. L. Multi-targeting by monotherapeutic antibacterials. Nat. Rev. Drug Discov. 6, 41–55 (2007).

Article  CAS  PubMed  Google Scholar 

Parkes, A. L. & Yule, I. A. Hybrid antibiotics—clinical progress and novel designs. Expert Opin. Drug Discov. 11, 665–680 (2016).

Article  CAS  PubMed  Google Scholar 

Yarlagadda, V., Sarkar, P., Samaddar, S. & Haldar, J. A vancomycin derivative with a pyrophosphate-binding group: a strategy to combat vancomycin-resistant bacteria. Angew. Chem. Int. Ed. Engl. 55, 7836–7840 (2016).

Article  CAS  PubMed  Google Scholar 

Jiang, Y. et al. “Metaphilic” cell-penetrating polypeptide–vancomycin conjugate efficiently eradicates intracellular bacteria via a dual mechanism. ACS Cent. Sci. 6, 2267–2276 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martin, J. K. et al. A dual-mechanism antibiotic kills gram-negative bacteria and avoids drug resistance. Cell 181, 1518–1532 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bai, S. et al. A polymeric approach toward resistance-resistant antimicrobial agent with dual-selective mechanisms of action. Sci. Adv. 7, eabc9917 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Denning, D. W. & Bromley, M. J. How to bolster the antifungal pipeline. Science 347, 1414–1416 (2015).

Article  CAS  PubMed  Google Scholar 

Kuroda, K. & DeGrado, W. F. Amphiphilic polymethacrylate derivatives as antimicrobial agents. J. Am. Chem. Soc. 127, 4128–4129 (2005).

Article  CAS  PubMed  Google Scholar 

Hancock, R. E. & Sahl, H. G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24, 1551–1557 (2006).

Article  CAS  PubMed  Google Scholar 

Xiong, M. et al. Helical antimicrobial polypeptides with radial amphiphilicity. Proc. Natl Acad. Sci. USA 112, 13155–13160 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, E. Y. et al. Helical antimicrobial peptides assemble into protofibril scaffolds that present ordered dsDNA to TLR9. Nat. Commun. 10, 1012 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Mookherjee, N., Anderson, M. A., Haagsman, H. P. & Davidson, D. J. Antimicrobial host defence peptides: functions and clinical potential. Nat. Rev. Drug Discov. 19, 311–332 (2020).

Article  CAS  PubMed  Google Scholar 

Xian, W. et al. Histidine-mediated ion specific effects enable salt tolerance of a pore-forming marine antimicrobial peptide. Angew. Chem. Int. Ed. Engl. 61, e202108501 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sang, P. & Cai, J. Unnatural helical peptidic foldamers as protein segment mimics. Chem. Soc. Rev. 52, 4843–4877 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hurdle, J. G., O’Neill, A. J., Chopra, I. & Lee, R. E. Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nat. Rev. Microbiol. 9, 62–75 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nederberg, F. et al. Biodegradable nanostructures with selective lysis of microbial membranes. Nat. Chem. 3, 409–414 (2011).

Article  CAS  PubMed  Google Scholar 

Krumm, C. et al. Antimicrobial poly(2-methyloxazoline)s with bioswitchable activity through satellite group modification. Angew. Chem. Int. Ed. Engl. 53, 3830–3834 (2014).

Article  CAS  PubMed  Google Scholar 

Bai, H. et al. A supramolecular antibiotic switch for antibacterial regulation. Angew. Chem. Int. Ed. Engl. 54, 13208–132013 (2015).

Article  CAS  PubMed  Google Scholar 

Lam, S. J. et al. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nat. Microbiol. 1, 16162 (2016).

Article  CAS  PubMed  Google Scholar 

Chin, W. et al. A macromolecular approach to eradicate multidrug resistant bacterial infections while mitigating drug resistance onset. Nat. Commun. 9, 917 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Zhong, W. et al. Designer broad-spectrum polyimidazolium antibiotics. Proc. Natl Acad. Sci. USA 117, 31376–31385 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cho, Y. et al. Noncovalent interactions of DNA bases with naphthalene and graphene. J. Chem. Theory Comput. 9, 2090–2096 (2013).

Article  CAS  PubMed  Google Scholar 

Zhou, M. et al. Poly(2-oxazoline)-based functional peptide mimics: eradicating MRSA infections and persisters while alleviating antimicrobial resistance. Angew. Chem. Int. Ed. Engl. 59, 6412–6419 (2020).

Article  CAS  PubMed  Google Scholar 

Whitfield, C. J. et al. Functional DNA–polymer conjugates. Chem. Rev. 121, 11030–11084 (2021).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif