Melanin depletion affects Aspergillus flavus conidial surface proteins, architecture, and virulence

Amin S, Thywissen A, Heinekamp T, Saluz HP, Brakhage AA (2014) Melanin dependent survival of Apergillus fumigatus conidia in lung epithelial cells. Int J Med Microbiol 304:626–636. https://doi.org/10.1016/J.IJMM.2014.04.009

Article  CAS  PubMed  Google Scholar 

Angelova MB, Pashova SB, Spasova BK, Vassilev SV, Slokoska LS (2005) Oxidative stress response of filamentous fungi induced by hydrogen peroxide and paraquat. Mycol Res 109:150–158. https://doi.org/10.1017/S0953756204001352

Article  CAS  PubMed  Google Scholar 

Arunachalam D, Ramanathan SM, Menon A, Madhav L, Ramaswamy G, Namperumalsamy VP, Prajna L, Kuppamuthu D (2022) Expression of immune response genes in human corneal epithelial cells interacting with Aspergillus flavus conidia. BMC Genom 23. https://doi.org/10.1186/S12864-021-08218-5

Binder J, Shadkchan Y, Osherov N, Krappmann S (2020) The essential thioredoxin reductase of the human pathogenic mold Aspergillus fumigatus is a promising antifungal target. Front Microbiol 11. https://doi.org/10.3389/FMICB.2020.01383

Bom VLP, de Castro PA, Winkelströter LK, Marine M, Hori JI, Ramalho LNZ, dos Reis TF, Goldman MHS, Brown NA, Rajendran R, Ramage G, Walker LA, Munro CA, Rocha MC, Malavazi I, Hagiwara D, Goldmana GH (2015) The Aspergillus fumigatus sitA phosphatase homologue is important for adhesion, cell wall integrity, biofilm formation, and virulence. Eukaryot Cell 14:728–744. https://doi.org/10.1128/EC.00008-15

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chamilos G, Carvalho A (2020) Aspergillus fumigatus DHN-melanin. Curr Top Microbiol Immunol 425:17–28. https://doi.org/10.1007/82_2020_205

Article  CAS  PubMed  Google Scholar 

Chang PK, Cary JW, Lebar MD (2020) Biosynthesis of conidial and sclerotial pigments in Aspergillus species. Appl Microbiol Biotechnol 104:2277–2286. https://doi.org/10.1007/S00253-020-10347-Y

Article  CAS  PubMed  Google Scholar 

Chang PK, Scharfenstein LL, Mack B, Wei Q, Gilbert M, Lebar M, Cary JW (2019) Identification of a copper-transporting ATPase involved in biosynthesis of A. flavus conidial pigment. Appl Microbiol Biotechnol 103:4889–4897. https://doi.org/10.1007/S00253-019-09820-0

Article  CAS  PubMed  Google Scholar 

Chatterjee S, Prados-Rosales R, Itin B, Casadevall A, Stark RE (2015) Solid-state NMR reveals the carbon-based molecular architecture of Cryptococcus neoformans fungal Eumelanins in the cell wall. J Biol Chem 290:13779–13790. https://doi.org/10.1074/JBC.M114.618389

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cutuli MA, Petronio Petronio G, Vergalito F, Magnifico I, Pietrangelo L, Venditti N, Di Marco R (2019) Galleria mellonella as a consolidated in vivo model hosts: new developments in antibacterial strategies and novel drug testing. Virulence 10:527–541. https://doi.org/10.1080/21505594.2019.1621649

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eisenman HC, Casadevall A (2012) Synthesis and assembly of fungal melanin. Appl Microbiol Biotechnol 93:931–940. https://doi.org/10.1007/S00253-011-3777-2

Article  CAS  PubMed  Google Scholar 

Eisenman HC, Duong R, Chan H, Tsue R, McClelland EE (2014) Reduced virulence of melanized Cryptococcus neoformans in Galleria mellonella. Virulence 5:611–618. https://doi.org/10.4161/VIRU.29234

Article  PubMed  PubMed Central  Google Scholar 

Foderaro JE, Douglas LM, Konopka JB (2017) MCC/eisosomes regulate cell wall synthesis and stress responses in fungi. J Fungi (Basel) 3. https://doi.org/10.3390/JOF3040061

Free SJ (2013) Fungal cell wall organization and biosynthesis. Adv Genet 81:33–82. https://doi.org/10.1016/B978-0-12-407677-8.00002-6

Article  CAS  PubMed  Google Scholar 

Gonçalves RCR, Lisboa HCF, Pombeiro-Sponchiado SR (2012) Characterization of melanin pigment produced by Aspergillus nidulans. World J Microbiol Biotechnol 28:1467–1474. https://doi.org/10.1007/S11274-011-0948-3

Article  PubMed  Google Scholar 

Gow NAR, Latge J-P, Munro CA (2017) The fungal cell wall: structure, biosynthesis, and function. Microbiol Spectr 5. https://doi.org/10.1128/MICROBIOLSPEC.FUNK-0035-2016

Grahl N, Puttikamonkul S, Macdonald JM, Gamcsik MP, Ngo LY, Hohl TM, Cramer RA (2011) In vivo hypoxia and a fungal alcohol dehydrogenase influence the pathogenesis of invasive pulmonary aspergillosis. PLoS Pathog 7. https://doi.org/10.1371/JOURNAL.PPAT.1002145

Harrington BJ, Hageage GJ (2003) Calcofluor white: a review of its uses and applications in clinical mycology and parasitology. Lab Med 34:361–367. https://doi.org/10.1309/EPH2TDT8335GH0R3

Article  Google Scholar 

Heinekamp T, Thywißen A, Macheleidt J, Keller S, Valiante V, Brakhage AA (2013) Aspergillus fumigatus melanins: interference with the host endocytosis pathway and impact on virulence. Front Microbiol 3. https://doi.org/10.3389/FMICB.2012.00440

Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13. https://doi.org/10.1093/NAR/GKN923

Article  PubMed  Google Scholar 

Janusz G, Pawlik A, Świderska-Burek U, Polak J, Sulej J, Jarosz-Wilkołazka A, Paszczyński A (2020) Laccase properties, physiological functions, and evolution. Int J Mol Sci 21. https://doi.org/10.3390/IJMS21030966

Karkowska-Kuleta J, Kozik A (2015) Cell wall proteome of pathogenic fungi. Acta Biochim Pol 62:339–351. https://doi.org/10.18388/ABP.2015_1032

Article  CAS  PubMed  Google Scholar 

Kawasaki H, Emori Y, Suzuki K (1990) Production and separation of peptides from proteins stained with Coomassie brilliant blue R-250 after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Anal Biochem 191:332–336. https://doi.org/10.1016/0003-2697(90)90227-Z

Article  CAS  PubMed  Google Scholar 

Krishnan S, Manavathu EK, Chandrasekar PH (2009) Aspergillus flavus: an emerging non-fumigatus Aspergillus species of significance. Mycoses 52:206–222. https://doi.org/10.1111/J.1439-0507.2008.01642.X

Article  CAS  PubMed  Google Scholar 

Kyrmizi I, Ferreira H, Carvalho A, Figueroa JAL, Zarmpas P, Cunha C, Akoumianaki T, Stylianou K, Deepe GS, Samonis G, Lacerda JF, Campos A, Kontoyiannis DP, Mihalopoulos N, Kwon-Chung KJ, El-Benna J, Valsecchi I, Beauvais A, Brakhage AA, Neves NM, Latge JP, Chamilos G (2018) Calcium sequestration by fungal melanin inhibits calcium-calmodulin signalling to prevent LC3-associated phagocytosis. Nat Microbiol 3:791–803. https://doi.org/10.1038/S41564-018-0167-X

Article  CAS  PubMed  Google Scholar 

Langfelder K, Streibel M, Jahn B, Haase G, Brakhage AA (2003) Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol 38:143–158. https://doi.org/10.1016/S1087-1845(02)00526-1

Article  CAS  PubMed  Google Scholar 

Liu S, Youngchim S, Zamith-Miranda D, Nosanchuk JD (2021) Fungal melanin and the mammalian immune system. J Fungus 7. https://doi.org/10.3390/JOF7040264

Manikandan P, Abdel-Hadi A, Randhir Babu Singh Y, Revathi R, Anita R, Banawas S, Bin Dukhyil AA, Alshehri B, Shobana CS, Panneer Selvam K, Narendran V (2019) Fungal keratitis: epidemiology, rapid detection, and antifungal susceptibilities of Fusarium and Aspergillus Isolates from Corneal Scrapings. Biomed Res Int 2019. https://doi.org/10.1155/2019/6395840

MM B, (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/ABIO.1976.9999

Article  Google Scholar 

Mouyna I, Hartl L, Latgé JP (2013) β-1,3-Glucan modifying enzymes in Aspergillus fumigatus. Front Microbiol 4. https://doi.org/10.3389/FMICB.2013.00081

Ng A, Xavier RJ (2011) Leucine-rich repeat (LRR) proteins: integrators of pattern recognition and signaling in immunity. Autophagy 7:1082–1084. https://doi.org/10.4161/AUTO.7.9.16464

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nosanchuk JD, Stark RE, Casadevall A (2015) Fungal melanin: what do we know about structure? Front Microbiol 6. https://doi.org/10.3389/FMICB.2015.01463

Pal AK, Gajjar DU, Vasavada AR (2014) DOPA and DHN pathway orchestrate melanin synthesis in Aspergillus species. Med Mycol 52:10–18. https://doi.org/10.3109/13693786.2013.826879/SUPPL_FILE/826879_SUPPL.PDF

Article  CAS  PubMed  Google Scholar 

Paris S, Debeaupuis JP, Crameri R, Carey M, Charlès F, Prévost MC, Schmitt C, Philippe B, Latgé JP (2003) Conidial hydrophobins of Aspergillus fumigatus. Appl Environ Microbiol 69:1581–1588. https://doi.org/10.1128/AEM.69.3.1581-1588.2003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perez-Riverol Y, Bai J, Bandla C, García-Seisdedos D, Hewapathirana S, Kamatchinathan S, Kundu DJ, Prakash A, Frericks-Zipper A, Eisenacher M, Walzer M, Wang S, Brazma A, Vizcaíno JA (2022) The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res 50:D543–D552. https://doi.org/10.1093/NAR/GKAB1038

Article  CAS  PubMed  Google Scholar 

Pihet M, Vandeputte P, Tronchin G, Renier G, Saulnier P, Georgeault S, Mallet R, Chabasse D, Symoens F, Bouchara JP (2009) Melanin is an essential component for the integrity of the cell wall of Aspergillus fumigatus conidia. BMC Microbiol 9. https://doi.org/10.1186/1471-2180-9-177

Pombeiro-Sponchiado SR, Sousa GS, Andrade JCR, Lisboa HF, Gonçalves RCR (2017) Production of melanin pigment by fungi and its biotechnological applications. Melanin. https://doi.org/10.5772/67375

Rabilloud T, Carpentier G, Tarroux P (1988) Improvement and simplification of low-background silver staining of proteins by using sodium dithionite. Electrophoresis 9:288–291. https://doi.org/10.1002/ELPS.1150090608

Article  CAS  PubMed  Google Scholar 

Rasconi S, Jobard M, Jouve L, Sime-Ngando T (2009) Use of calcofluor white for detection, identification, and quantification of phytoplanktonic fungal parasites. Appl Environ Microbiol 75:2545–2553. https://doi.org/10.1128/AEM.02211-08

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schmidt F, Thywißen A, Goldmann M, Cunha C, Cseresnyés Z, Schmidt H, Rafiq M, Galiani S, Gräler MH, Chamilos G, Lacerda JF, Campos A Jr, Eggeling C, Figge MT, Heinekamp T, Filler SG, Carvalho A, Brakhage AA (2020) Flotillin-dependent membrane microdomains are required for functional phagolysosomes against fungal infections. Cell reports 32(7):108017. https://doi.org/10.1016/j.celrep.2020.108017

Selvam RM, Nithya R, Devi PN, Shree RSB, Nila MV, Demonte NL, Thangavel C, Maheshwari JJ, Lalitha P, Prajna NV, Dharmalingam K (2015) Exoproteome of Aspergillus flavus corneal isolates and saprophytes: identification of proteoforms of an oversecreted alkaline protease. J Proteomics 115:23–35. https://doi.org/10.1016/J.JPROT.2014.11.017

Article  CAS  PubMed  Google Scholar 

Shait Mohammed MR, Balamurgan MK, Amrathlal RS, Kannan P, Jayapal JM, Namperumalsamy VP, Prajna L, Dharmalingam K (2019a) Dataset for the spore surface proteome and hydrophobin A/RodA proteoforms of A.flavus. Data Brief 23. https://doi.org/10.1016/J.DIB.2019.103817

Shait Mohammed MR, Balamurugan M, Amrathlal RS, Kannan P, Jayapal JM, Namperumalsamy VP, Prajna L, Kuppamuthu D (2019b) Identification of the proteoforms of surface localized Rod A of Aspergillus flavus and determination of the mechanism of proteoform generation. J Proteomics 193:62–70. https://doi.org/10.1016/J.JPROT.2018.12.016

Article  CAS  PubMed 

留言 (0)

沒有登入
gif