The protein composition of exosomes released by prostate cancer cells is distinctly regulated by androgen receptor-antagonists and -agonist to stimulate growth of target cells

Giovannelli P, Di Donato M, Galasso G, Monaco A, Licitra F, Perillo B, et al. Communication between cells: exosomes as a delivery system in prostate cancer. Cell Communication and Signaling. 2021;19(1):1–12.

Article  Google Scholar 

Wen S, Niu Y, Huang H. Posttranslational regulation of androgen dependent and independent androgen receptor activities in prostate cancer. Asian Journal of Urology. 2020;7(3):203–18.

Article  PubMed  Google Scholar 

Perner S, Cronauer MV, Schrader AJ, Klocker H, Culig Z, Baniahmad A. Adaptive responses of androgen receptor signaling in castration-resistant prostate cancer. Oncotarget. 2015;6(34):35542.

Article  PubMed  PubMed Central  Google Scholar 

Pungsrinont T, Kallenbach J, Baniahmad A. Role of PI3K-AKT-mTOR pathway as a pro-survival signaling and resistance-mediating mechanism to therapy of prostate cancer. Int J Mol Sci. 2021;22(20):11088.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lallous N, Snow O, Sanchez C, Parra Nuñez AK, Sun B, Hussain A, et al. Evaluation of darolutamide (Odm201) efficiency on androgen receptor mutants reported to date in prostate cancer patients. Cancers. 2021;13(12):2939.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Papaioannou M, Soderholm AA, Hong W, Dai Y, Roediger J, Roell D, et al. Computational and functional analysis of the androgen receptor antagonist atraric acid and its derivatives. Anti Cancer Agents Med Chem. 2013;13(5):801–10.

Article  CAS  Google Scholar 

Ehsani M, Bartsch S, Rasa SMM, Dittmann J, Pungsrinont T, Neubert L, et al. The natural compound atraric acid suppresses androgen-regulated neo-angiogenesis of castration-resistant prostate cancer through angiopoietin 2. Oncogene. 2022;41(23):3263–77.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schweizer MT, Antonarakis ES, Denmeade SR. Bipolar androgen therapy: a paradoxical approach for the treatment of castration-resistant prostate cancer. Elsevier. 2017:323–3255.

Teply BA, Wang H, Luber B, Sullivan R, Rifkind I, Bruns A, et al. Bipolar androgen therapy in men with metastatic castration-resistant prostate cancer after progression on enzalutamide: an open-label, phase 2, multicohort study. Lancet Oncol. 2018;19(1):76–86.

Article  CAS  PubMed  Google Scholar 

Denmeade SR, Isaacs JT. Bipolar androgen therapy: the rationale for rapid cycling of supraphysiologic androgen/ablation in men with castration resistant prostate cancer. Prostate. 2010;70(14):1600–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Isaacs JT, D'Antonio JM, Chen S, Antony L, Dalrymple SP, Ndikuyeze GH, et al. Adaptive auto-regulation of androgen receptor provides a paradigm shifting rationale for bipolar androgen therapy (BAT) for castrate resistant human prostate cancer. Prostate. 2012;72(14):1491–505.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nyquist MD, Corella A, Mohamad O, Coleman I, Kaipainen A, Kuppers DA, et al. Molecular determinants of response to high-dose androgen therapy in prostate cancer. JCI Insight. 2019;4(19):e129715.

Article  PubMed  PubMed Central  Google Scholar 

Denmeade SR, Wang H, Agarwal N, Smith DC, Schweizer MT, Stein MN, et al. TRANSFORMER: a randomized phase II study comparing bipolar androgen therapy versus enzalutamide in asymptomatic men with castration-resistant metastatic prostate cancer. J Clin Oncol. 2021;39(12):1371–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mirzakhani K, Kallenbach J, Rasa SMM, Ribaudo F, Ungelenk M, Ehsani M, et al. The androgen receptor—lncRNASAT1-AKT-p15 axis mediates androgen-induced cellular senescence in prostate cancer cells. Oncogene. 2022;41(7):943–59.

Article  CAS  PubMed  Google Scholar 

Roediger J, Hessenkemper W, Bartsch S, Manvelyan M, Huettner SS, Liehr T, et al. Supraphysiological androgen levels induce cellular senescence in human prostate cancer cells through the Src-Akt pathway. Mol Cancer. 2014;13(1):1–15.

Article  Google Scholar 

Kallenbach J, Atri Roozbahani G, Heidari Horestani M, Baniahmad A. Distinct mechanisms mediating therapy-induced cellular senescence in prostate cancer. Cell & Bioscience. 2022;12(1):1–17.

Article  Google Scholar 

Feng D, Shi X, You J, Xiong Q, Zhu W, Wei Q, et al. A cellular senescence-related gene prognostic index for biochemical recurrence and drug resistance in patients with prostate cancer. Am J Cancer Res. 2022;12(8):3811–28.

CAS  PubMed  PubMed Central  Google Scholar 

Sun Y. Tumor microenvironment and cancer therapy resistance. Cancer Lett. 2016;380(1):205–15.

Article  CAS  PubMed  Google Scholar 

Akoto T, Saini S. Role of exosomes in prostate cancer metastasis. Int J Mol Sci. 2021;22(7):3528.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pungsrinont T, Sutter MF, Ertingshausen MC, Lakshmana G, Kokal M, Khan AS, et al. Senolytic compounds control a distinct fate of androgen receptor agonist-and antagonist-induced cellular senescent LNCaP prostate cancer cells. Cell & bioscience. 2020;10(1):1–13.

Article  Google Scholar 

Misawa T, Tanaka Y, Okada R, Takahashi A. Biology of extracellular vesicles secreted from senescent cells as senescence-associated secretory phenotype factors. Geriatr Gerontol Int. 2020;20(6):539–46.

Article  PubMed  Google Scholar 

Hu G, Xie L, Zhou Y, Cai X, Gao P, Xue B. Roles and clinical application of exosomes in prostate Cancer. Frontiers in Urology. 2022;2:843597.

Article  Google Scholar 

Dai J, Escara-Wilke J, Keller JM, Jung Y, Taichman RS, Pienta KJ, et al. Primary prostate cancer educates bone stroma through exosomal pyruvate kinase M2 to promote bone metastasis. J Exp Med. 2019;216(12):2883–99.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pan J, Ding M, Xu K, Yang C, Mao L-J. Exosomes in diagnosis and therapy of prostate cancer. Oncotarget. 2017;8(57):97693–700.

Article  PubMed  PubMed Central  Google Scholar 

Asencio-Barría C, Defamie N, Sáez JC, Mesnil M, Godoy AS. Direct intercellular communications and cancer: a snapshot of the biological roles of connexins in prostate cancer. Cancers. 2019;11(9):1370.

Article  PubMed  PubMed Central  Google Scholar 

Protopopov AI, Li J, Winberg G, Gizatullin RZ, Kashuba VI, Klein G, et al. Human cell lines engineered for tetracycline-regulated expression of tumor suppressor candidate genes from a frequently affected chromosomal region, 3p21. The Journal of Gene Medicine. 2002;4(4):397–406.

Article  CAS  PubMed  Google Scholar 

Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci. 1995;92(20):9363–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82.

Article  CAS  PubMed  Google Scholar 

Gebert N, Cheng C-W, Kirkpatrick JM, Di Fraia D, Yun J, Schädel P, et al. Region-specific proteome changes of the intestinal epithelium during aging and dietary restriction. Cell Rep. 2020;31(4)

Kelmer Sacramento E, Kirkpatrick JM, Mazzetto M, Baumgart M, Bartolome A, Di Sanzo S, et al. Reduced proteasome activity in the aging brain results in ribosome stoichiometry loss and aggregation. Mol Syst Biol. 2020;16(6):e9596.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ulgen E, Ozisik O, Sezerman OU. pathfindR: an R package for comprehensive identification of enriched pathways in omics data through active subnetworks. Front Genet. 2019;10:858.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ulgen E, Ozisik O, Sezerman OU. pathfindR: an R package for pathway enrichment analysis utilizing active subnetworks. BioRxiv. 2018:272450.

Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC bioinformatics. 2013;14(1):1–14.

Article  Google Scholar 

Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44(W1):W90–W7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie Z, Bailey A, Kuleshov MV, Clarke DJ, Evangelista JE, Jenkins SL, et al. Gene set knowledge discovery with Enrichr. Current protocols. 2021;1(3):e90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Handa RJ, Pak TR, Kudwa AE, Lund TD, Hinds L. An alternate pathway for androgen regulation of brain function: activation of estrogen receptor beta by the metabolite of dihydrotestosterone, 5α-androstane-3β, 17β-diol. Horm Behav. 2008;53(5):741–52.

Article  CAS  PubMed  Google Scholar 

Hessenkemper W, Roediger J, Bartsch S, Houtsmuller AB, van Royen ME, Petersen I, et al. A natural androgen receptor antagonist induces cellular senescence in prostate cancer cells. Mol Endocrinol. 2014;28(11):1831–40.

Article  PubMed  PubMed Central  Google Scholar 

Gupta S, Pungsrinont T, Ženata O, Neubert L, Vrzal R, Baniahmad A. Interleukin-23 represses the level of cell senescence induced by the androgen receptor antagonists enzalutamide and darolutamide in castration-resistant prostate cancer cells. Hormones and Cancer. 2020;11(3):182–90.

Article  CAS 

留言 (0)

沒有登入
gif