Thiamine-modified metabolic reprogramming of human pluripotent stem cell-derived cardiomyocyte under space microgravity

Williams, D. R. The biomedical challenges of space flight. Annu. Rev. Med. 54, 245–256 (2003).

Article  CAS  PubMed  Google Scholar 

Afshinnekoo, E. et al. Fundamental biological features of spaceflight: advancing the field to enable deep-space exploration. Cell 183, 1162–1184 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hupfeld, K. E., McGregor, H. R., Reuter-Lorenz, P. A. & Seidler, R. D. Microgravity effects on the human brain and behavior: dysfunction and adaptive plasticity. Neurosci. Biobehav. Rev. 122, 176–189 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Strollo, F. & Vernikos, J. Aging-like metabolic and adrenal changes in microgravity: state of the art in preparation for Mars. Neurosci. Biobehav. Rev. 126, 236–242 (2021).

Article  CAS  PubMed  Google Scholar 

Hughson, R. L., Helm, A. & Durante, M. Heart in space: effect of the extraterrestrial environment on the cardiovascular system. Nat. Rev. Cardiol. 15, 167–180 (2018).

Article  PubMed  Google Scholar 

Scott, J. M., Stoudemire, J., Dolan, L. & Downs, M. Leveraging spaceflight to advance cardiovascular research on Earth. Cir. Res. 130, 942–957 (2022).

Article  CAS  Google Scholar 

Baran, R. et al. The cardiovascular system in space: focus on in vivo and in vitro studies. Biomedicines 10, 59 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Sy, M. R., Keefe, J. A., Sutton, J. P. & Wehrens, X. H. T. Cardiac function, structural, and electrical remodeling by microgravity exposure. Am. J. Physiol. Heart Circ. Physiol. 324, H1–H13 (2023).

Article  CAS  PubMed  Google Scholar 

Nguyen, H. P., Tran, P. H., Kim, K. S. & Yang, S. G. The effects of real and simulated microgravity on cellular mitochondrial function. NPJ Microgravity 7, 44 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lei, X., Zhang, W., Zhang, Y. & Zhao, L. Editorial: The regulating mechanisms of development, growth, and metabolism: from ground to space. Front. Cell. Dev. Biol. 10, 951741 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Walls, S. et al. Prolonged exposure to microgravity reduces cardiac contractility and initiates remodeling in Drosophila. Cell. Rep. 33, 108445 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cherednichenko, G. et al. NADH oxidase activity of rat cardiac sarcoplasmic reticulum regulates calcium-induced calcium release. Cir. Res. 94, 478–486 (2004).

Article  CAS  Google Scholar 

Doenst, T., Nguyen, T. D. & Abel, E. D. Cardiac metabolism in heart failure: implications beyond ATP production. Cir. Res. 113, 709–724 (2013).

Article  CAS  Google Scholar 

Gibb, A. A. & Hill, B. G. Metabolic coordination of physiological and pathological cardiac remodeling. Cir. Res. 123, 107–128 (2018).

Article  CAS  Google Scholar 

Bertero, E. & Maack, C. Metabolic remodelling in heart failure. Nat. Rev. Cardiol. 15, 457–470 (2018).

Article  CAS  PubMed  Google Scholar 

Wnorowski, A. et al. Effects of spaceflight on human induced pluripotent stem cell-derived cardiomyocyte structure and function. Stem Cell Rep. 13, 960–969 (2019).

Article  CAS  Google Scholar 

Connor, M. K. & Hood, D. A. Effect of microgravity on the expression of mitochondrial enzymes in rat cardiac and skeletal muscles. J. Appl. Physiol. 84, 593–598 (1998).

Article  CAS  PubMed  Google Scholar 

DiNicolantonio, J. J., Liu, J. & O’Keefe, J. H. Thiamine and cardiovascular disease: a literature review. Prog. Cardiovasc. Dis. 61, 27–32 (2018).

Article  PubMed  Google Scholar 

Gioda, C. R. et al. Impaired cellular contractile function in thiamine-deficient rat cardiomyocytes. Eur. J. Heart Fail. 11, 1126–1128 (2009).

Article  PubMed  Google Scholar 

Roman-Campos, D. et al. Cardiac structural changes and electrical remodeling in a thiamine-deficiency model in rats. Life Sci. 84, 817–824 (2009).

Article  CAS  PubMed  Google Scholar 

Katare, R. G. et al. Vitamin B1 analog benfotiamine prevents diabetes-induced diastolic dysfunction and heart failure through Akt/Pim-1-mediated survival pathway. Circ. Heart Fail. 3, 294–305 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miao, S. et al. Retinoic acid promotes metabolic maturation of human embryonic stem cell-derived cardiomyocytes. Theranostics 10, 9686–9701 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, X. et al. MLP-deficient human pluripotent stem cell derived cardiomyocytes develop hypertrophic cardiomyopathy and heart failure phenotypes due to abnormal calcium handling. Cell. Death Dis. 10, 610 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Liu, Z. et al. Alterations in the heart rate and activity rhythms of three orbital astronauts on a space mission. Life. Sci. Space Res. 4, 62–66 (2015).

Article  Google Scholar 

Otsuka, K. et al. Long-term exposure to space’s microgravity alters the time structure of heart rate variability of astronauts. Heliyon 2, e00211 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Miki, K. et al. ERRgamma enhances cardiac maturation with T-tubule formation in human iPSC-derived cardiomyocytes. Nat. Commun. 12, 3596 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Braun, J. L., Geromella, M. S., Hamstra, S. I., Messner, H. N. & Fajardo, V. A. Characterizing SERCA function in murine skeletal muscles after 35-37 days of spaceflight. Int. J. Mol. Sci. 22, 11764 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schwoerer, A. P. et al. Enhanced Ca(2)+ influx through cardiac L-type Ca(2)+ channels maintains the systolic Ca(2)+ transient in early cardiac atrophy induced by mechanical unloading. Pflug. Arch. 465, 1763–1773 (2013).

Article  CAS  Google Scholar 

Acharya, A. et al. Parabolic, flight-induced, acute hypergravity and microgravity effects on the beating rate of human cardiomyocytes. Cells 8, 352 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smith, T. J. et al. Thiamine deficiency disorders: a clinical perspective. Ann. N. Y. Acad. Sci. 1498, 9–28 (2021).

Article  PubMed  Google Scholar 

Teran, M. D. M., de Moreno de LeBlanc, A., Savoy de Giori, G. & LeBlanc, J. G. Thiamine-producing lactic acid bacteria and their potential use in the prevention of neurodegenerative diseases. Appl. Microbiol. Biotechnol. 105, 2097–2107 (2021).

Article  CAS  PubMed  Google Scholar 

Wang, X. et al. miR-214 targets ATF4 to inhibit bone formation. Nat. Med. 19, 93–100 (2013).

Article  PubMed  Google Scholar 

Wang, L. et al. Mechanical sensing protein PIEZO1 regulates bone homeostasis via osteoblast-osteoclast crosstalk. Nat. Commun. 11, 282 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Acharya, A. et al. Microgravity-induced stress mechanisms in human stem cell-derived cardiomyocytes. iScience 25, 104577 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

da Silveira, W. A. et al. Comprehensive multi-omics analysis reveals mitochondrial stress as a central biological hub for spaceflight impact. Cell 183, 1185–1201.e20 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martinez-Reyes, I. & Chandel, N. S. Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 11, 102 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu, J. et al. Mitochondrial NADP(H) generation is essential for proline biosynthesis. Science 372, 968–972 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ritterhoff, J. et al. Metabolic remodeling promotes cardiac hypertrophy by directing glucose to aspartate biosynthesis. Cir. Res. 126, 182–196 (2020).

Article 

留言 (0)

沒有登入
gif