Dysfunction of the adhesion G protein-coupled receptor latrophilin 1 (ADGRL1/LPHN1) increases the risk of obesity

NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet (London, England). 390, 2627–2642 (2017).

Brown, W. V., Fujioka, K., Wilson, P. W. F. & Woodworth, K. A. Obesity: why be concerned? Am. J. Med. 122, S4–S11 (2009).

Article  PubMed  Google Scholar 

Golden, A. & Kessler, C. Obesity and genetics. J. Am. Assoc. Nurse Pract. 32, 493–496 (2020).

Article  PubMed  Google Scholar 

Elias, C. F. et al. Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron. 21, 1375–1385 (1998).

Article  CAS  PubMed  Google Scholar 

Morton, G. J. et al. Central nervous system control of food intake and body weight. Nature. 443, 289–295 (2006).

Article  CAS  PubMed  Google Scholar 

Schwartz, M. W. et al. Central nervous system control of food intake. Nature. 404, 661–671 (2000).

Article  CAS  PubMed  Google Scholar 

Krashes, M. J., Shah, B. P., Koda, S. & Lowell, B. B. Rapid versus delayed stimulation of feeding by the endogenously released AgRP neuron mediators GABA, NPY, and AgRP. Cell Metab. 18, 588–595 (2013).

Article  CAS  PubMed  Google Scholar 

Olson, B. R. et al. Oxytocin and an oxytocin agonist administered centrally decrease food intake in rats. Peptides. 12, 113–118 (1991).

Article  CAS  PubMed  Google Scholar 

Ramirez-Virella, J. & Leinninger, G. M. The role of central neurotensin in regulating feeding and body weight. Endocrinology. 162, bqab038 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Hillebrand, J. J. G., Wied, D. D. & Adan, R. A. H. Neuropeptides, food intake and body weight regulation: a hypothalamic focus. Peptides. 23, 2283–2306 (2002).

Article  CAS  PubMed  Google Scholar 

Krashes, M. J. et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Invest. 121, 1424–1428 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakajima, K.-I. et al. Gs-coupled GPCR signalling in AgRP neurons triggers sustained increase in food intake. Nat. Commun. 7, 10268 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Üner, A. G. et al. Role of POMC and AgRP neuronal activities on glycaemia in mice. Sci. Rep. 9, 13068 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Nakazato, M. et al. A role for ghrelin in the central regulation of feeding. Nature. 409, 194–198 (2001).

Article  CAS  PubMed  Google Scholar 

Broberger, C. et al. Subtypes Y1 and Y2 of the neuropeptide Y receptor are respectively expressed in pro-opiomelanocortin- and neuropeptide-Y-containing neurons of the rat hypothalamic arcuate nucleus. Neuroendocrinology. 66, 393–408 (1997).

Article  CAS  PubMed  Google Scholar 

Burke, L. K. et al. Sex difference in physical activity, energy expenditure and obesity driven by a subpopulation of hypothalamic POMC neurons. Mol. Metab. 5, 245–252 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doslikova, B. et al. 5-HT2C receptor agonist anorectic efficacy potentiated by 5-HT1B receptor agonist coapplication: an effect mediated via increased proportion of pro-opiomelanocortin neurons activated. J. Neurosci. 33, 9800–9804 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takayasu, S., Usutani, M., Makita, K. & Daimon, M. The activation of G protein-coupled receptor 30 increases pro-opiomelanocortin gene expression through cAMP/PKA/NR4A pathway in mouse pituitary corticotroph AtT-20 cells. Neurosci. Lett. 739, 135468 (2020).

Article  CAS  PubMed  Google Scholar 

Marks, D. L., Hruby, V., Brookhart, G. & Cone, R. D. The regulation of food intake by selective stimulation of the type 3 melanocortin receptor (MC3R). Peptides. 27, 259–264 (2006).

Article  CAS  PubMed  Google Scholar 

Campfield, L. A. et al. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science. 269, 546–549 (1995).

Article  CAS  PubMed  Google Scholar 

Tovar, S. et al. Central administration of resistin promotes short-term satiety in rats. Eur. J. Endocrinol. 153, R1–R5 (2005).

Article  CAS  PubMed  Google Scholar 

Dragano, N. R. V. et al. Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation. J. Neuroinflammation. 14, 91 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Bachman, E. S. et al. betaAR signaling required for diet-induced thermogenesis and obesity resistance. Science. 297, 843–845 (2002).

Article  CAS  PubMed  Google Scholar 

Eisenstein, A., Chitalia, S. V. & Ravid, K. Bone marrow and adipose tissue adenosine receptors effect on osteogenesis and adipogenesis. Int. J. Mol. Sci. 21, 7470 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gnad, T. et al. Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors. Nature. 516, 395–399 (2014).

Article  CAS  PubMed  Google Scholar 

Hong, Y.-H. et al. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology. 146, 5092–5099 (2005).

Article  CAS  PubMed  Google Scholar 

Kimura, T. et al. Adipocyte Gq signaling is a regulator of glucose and lipid homeostasis in mice. Nat. Commun. 13, 1652 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amisten, S. Quantification of the mRNA expression of G protein-coupled receptors in human adipose tissue. Methods Cell Biol. 132, 73–105 (2016).

Article  CAS  PubMed  Google Scholar 

Nogueira, P. A. S. et al. The orphan receptor GPR68 is expressed in the hypothalamus and is involved in the regulation of feeding. Neurosci. Lett. 781, 136660 (2022).

Article  CAS  PubMed  Google Scholar 

Nogueira, P. A. S. et al. The orphan G protein-coupled receptor, GPR139, is expressed in the hypothalamus and is involved in the regulation of body mass, blood glucose, and insulin. Neurosci. Lett. 792, 136955 (2022).

Article  PubMed  Google Scholar 

Hamann, J. et al. International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein-coupled receptors. Pharmacol. Rev. 67, 338–367 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Piao, X. et al. G protein-coupled receptor-dependent development of human frontal cortex. Science. 303, 2033–2036 (2004).

Article  CAS  PubMed  Google Scholar 

Chiang, N.-Y. et al. Disease-associated GPR56 mutations cause bilateral frontoparietal polymicrogyria via multiple mechanisms. J. Biol. Chem. 286, 14215–14225 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arcos-Burgos, M. et al. A common variant of the latrophilin 3 gene, LPHN3, confers susceptibility to ADHD and predicts effectiveness of stimulant medication. Mol. Psychiatry. 15, 1053–1066 (2010).

Article  CAS  PubMed  Google Scholar 

Scholz, N. Cancer cell mechanics: adhesion G protein-coupled receptors in action? Front. Oncol. 8, 59 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Kaczmarek, I. et al. The relevance of adhesion G protein-coupled receptors in metabolic functions. Biol. Chem. 403, 195–209 (2022).

Article  CAS  PubMed  Google Scholar 

Suchý, T. et al. The repertoire of Adhesion G protein-coupled receptors in adipocytes and their functional relevance. Int. J. Obes. (Lond). 44, 2124–2136 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Matsushita, H., Lelianova, V. G. & Ushkaryov, Y. A. The latrophilin family: multiply spliced G protein-coupled receptors with differential tissue distribution. FEBS Lett. 443, 348–352 (1999).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif