High yield killing of lymphoma cells by anti-CD22 CAR-NK cell therapy

Basar R, Daher M, Rezvani K (2020) Next-generation cell therapies: the emerging role of CAR-NK cells. Hematology 2020:570–578. https://doi.org/10.1182/hematology.2020002547

Article  PubMed  PubMed Central  Google Scholar 

Bashiri Dezfouli A, Yazdi M, Pockley AG et al (2021) NK cells armed with chimeric antigen receptors (CAR): roadblocks to successful development. Cells 10:3390. https://doi.org/10.3390/cells10123390

Article  CAS  PubMed  PubMed Central  Google Scholar 

Colamartino ABL, Lemieux W, Bifsha P et al (2019) Efficient and robust NK-cell transduction with baboon envelope pseudotyped lentivector. Front Immunol 10:1–7. https://doi.org/10.3389/fimmu.2019.02873

Article  CAS  Google Scholar 

Daher M, Melo Garcia L, Li Y, Rezvani K (2021) CAR-NK cells: the next wave of cellular therapy for cancer. Clin Transl Immunol 10:1–16. https://doi.org/10.1002/cti2.1274

Article  CAS  Google Scholar 

Daher M, Rezvani K (2021) Outlook for new CAR-based therapies with a focus on CAR NK cells: what lies beyond CAR-engineered T cells in the race against cancer. Cancer Discov 11:45–58. https://doi.org/10.1158/2159-8290.CD-20-0556

Article  CAS  PubMed  Google Scholar 

Fujiwara K, Masutani M, Tachibana M, Okada N (2020) Impact of scFv structure in chimeric antigen receptor on receptor expression efficiency and antigen recognition properties. Biochem Biophys Res Commun 527:350–357. https://doi.org/10.1016/j.bbrc.2020.03.071

Article  CAS  PubMed  Google Scholar 

Gheidari F, Arefian E, Adegani FJ et al (2021) The miR-142 suppresses U-87 glioblastoma cell growth by targeting EGFR oncogenic signaling pathway. Iran J Pharm Res 20:202–212. https://doi.org/10.22037/ijpr.2021.115089.15193

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gheidari F, Arefian E, Saadatpour F et al (2022) The miR-429 suppresses proliferation and migration in glioblastoma cells and induces cell-cycle arrest and apoptosis via modulating several target genes of ERBB signaling pathway. Mol Biol Rep 49:11855–11866. https://doi.org/10.1007/s11033-022-07903-2

Article  CAS  PubMed  Google Scholar 

Grote S, Mittelstaet J, Baden C et al (2020) Adapter chimeric antigen receptor (AdCAR)-engineered NK-92 cells: an off-the-shelf cellular therapeutic for universal tumor targeting. Oncoimmunology 9:1–11. https://doi.org/10.1080/2162402X.2020.1825177

Article  Google Scholar 

Guo Z, Tu S, Yu S et al (2021) Preclinical and clinical advances in dual-target chimeric antigen receptor therapy for hematological malignancies. Cancer Sci 112:1357–1368. https://doi.org/10.1111/cas.14799

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han C, Jiang Y, Wang Z, Wang H (2019) Natural killer cells involved in tumour immune escape of hepatocellular carcinomar. Int Immunopharmacol 73:10–16. https://doi.org/10.1016/j.intimp.2019.04.057

Article  CAS  PubMed  Google Scholar 

Haso W, Lee DW, Shah NN et al (2013) Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia. Blood 121:1165–1171. https://doi.org/10.1182/blood-2012-06-438002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heipertz EL, Zynda ER, Stav-Noraas TE et al (2021) Current perspectives on “off-the-shelf” allogeneic NK and CAR-NK cell therapies. Front Immunol 12:. https://doi.org/10.3389/fimmu.2021.732135

Herrera L, Juan M, Eguizabal C (2020) Purification, culture, and CD19-CAR lentiviral transduction of adult and umbilical cord blood NK cells. Curr Protoc Immunol 131:2–13. https://doi.org/10.1002/cpim.108

Article  CAS  Google Scholar 

Kalos M, Levine BL, Porter DL et al (2011) T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 3:. https://doi.org/10.1126/scitranslmed.3002842

Kawalekar OU, O’Connor RS, Fraietta JA et al (2016) Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 44:380–390. https://doi.org/10.1016/j.immuni.2016.01.021

Article  CAS  PubMed  Google Scholar 

Khawar MB, Sun H (2021) CAR-NK cells: from natural basis to design for kill. Front Immunol 12:1–22. https://doi.org/10.3389/fimmu.2021.707542

Article  CAS  Google Scholar 

Klingemann H (2014) Are natural killer cells superior CAR drivers? Oncoimmunology 3:37–41. https://doi.org/10.4161/onci.28147

Article  Google Scholar 

Konjević GM, Vuletić AM, Mirjačić Martinović KM et al (2019) The role of cytokines in the regulation of NK cells in the tumor environment. Cytokine 117:30–40. https://doi.org/10.1016/j.cyto.2019.02.001

Article  CAS  PubMed  Google Scholar 

Kotzur R, Duev-Cohen A, Kol I et al (2022) NK-92 cells retain vitality and functionality when grown in standard cell culture conditions. PLoS One 17:1–13. https://doi.org/10.1371/journal.pone.0264897

Article  CAS  Google Scholar 

Lee DW, Gardner R, Porter DL et al (2014) Current concepts in the diagnosis and management of cytokine release syndrome. Blood 124:188–195. https://doi.org/10.1182/blood-2014-05-552729

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu S, Deng B, Yin Z et al (2021) Combination of CD19 and CD22 CAR-T cell therapy in relapsed B-cell acute lymphoblastic leukemia after allogeneic transplantation. Am J Hematol 96:671–679. https://doi.org/10.1002/ajh.26160

Article  CAS  PubMed  Google Scholar 

Long AH, Haso WM, Shern JF et al (2015) 4–1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med 21:581–590. https://doi.org/10.1038/nm.3838

Article  CAS  PubMed  PubMed Central  Google Scholar 

Milone MC, Fish JD, Carpenito C et al (2009) Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther 17:1453–1464. https://doi.org/10.1038/mt.2009.83

Article  CAS  PubMed  PubMed Central  Google Scholar 

Müller S, Bexte T, Gebel V et al (2020) High cytotoxic efficiency of lentivirally and alpharetrovirally engineered CD19-specific chimeric antigen receptor natural killer cells against acute lymphoblastic leukemia. Front Immunol 10:1–16. https://doi.org/10.3389/fimmu.2019.03123

Article  CAS  Google Scholar 

Nitschke L (2009) CD22 and Siglec-G: B-cell inhibitory receptors with distinct functions. Immunol Rev 230:128–143. https://doi.org/10.1111/j.1600-065X.2009.00801.x

Article  CAS  PubMed  Google Scholar 

Overview E (2019) Natural killer cells for cancer immunotherapy: a new CAR is catching up. EBioMedicine 39:1–2. https://doi.org/10.1016/j.ebiom.2019.01.018

Article  Google Scholar 

Quintarelli C, Sivori S, Caruso S et al (2018) CD19 redirected CAR NK cells are equally effective but less toxic than CAR T cells. Blood 132:3491–3491. https://doi.org/10.1182/blood-2018-99-118005

Article  Google Scholar 

Rafiq S, Hackett CS, Brentjens RJ (2020) Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol 17:147–167. https://doi.org/10.1038/s41571-019-0297-y

Article  PubMed  Google Scholar 

Rassaei N, Dibavar MA, Soleimani M et al (2023) The effect of microvesicles derived from K562 cells on proliferation and apoptosis of human bone marrow mesenchymal stem cells. Iran J Basic Med Sci 26:295–300. https://doi.org/10.22038/IJBMS.2023.66903.14675

Article  PubMed  PubMed Central  Google Scholar 

Roex G, Campillo-Davo D, Flumens D et al (2022) Two for one: targeting BCMA and CD19 in B-cell malignancies with off-the-shelf dual-CAR NK-92 cells. J Transl Med 20:1–13. https://doi.org/10.1186/s12967-022-03326-6

Article  CAS  Google Scholar 

Romanski A, Uherek C, Bug G et al (2016) CD19-CAR engineered NK-92 cells are sufficient to overcome NK cell resistance in B-cell malignancies. J Cell Mol Med 20:1287–1294. https://doi.org/10.1111/jcmm.12810

Article  CAS  PubMed  PubMed Central  Google Scholar 

Savani M, Oluwole O, Dholaria B (2021) New targets for CAR T therapy in hematologic malignancies. Best Pract Res Clin Haematol 34:. https://doi.org/10.1016/j.beha.2021.101277

Schönfeld K, Sahm C, Zhang C et al (2015) Selective inhibition of tumor growth by clonal NK cells expressing an ErbB2/HER2-specific chimeric antigen receptor. Mol Ther 23:330–338. https://doi.org/10.1038/mt.2014.219

Article  CAS  PubMed  Google Scholar 

Shah NN, Stevenson MS, Yuan CM et al (2015) Characterization of CD22 expression in acute lymphoblastic leukemia. Pediatr Blood Cancer 62:964–969. https://doi.org/10.1002/pbc.25410

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spiegel JY, Patel S, Muffly L et al (2021) CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat Med 27:1419–1431. https://doi.org/10.1038/s41591-021-01436-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suck G, Linn YC, Tonn T (2016) Natural killer cells for therapy of leukemia. Transfus Med Hemotherapy 43:89–95. https://doi.org/10.1159/000445325

Article 

留言 (0)

沒有登入
gif