Transport mechanism of presynaptic high-affinity choline uptake by CHT1

Zeisel, S. H. Choline: critical role during fetal development and dietary requirements in adults. Annu. Rev. Nutr. 26, 229–250 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeisel, S. H. & Blusztajn, J. K. Choline and human nutrition. Annu. Rev. Nutr. 14, 269–296 (1994).

Article  CAS  PubMed  Google Scholar 

Sarter, M. & Parikh, V. Choline transporters, cholinergic transmission and cognition. Nat. Rev. Neurosci. 6, 48–56 (2005).

Article  CAS  PubMed  Google Scholar 

Zeisel, S. Choline, other methyl-donors and epigenetics. Nutrients 9, 445 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Bekdash, R. A. Neuroprotective effects of choline and other methyl donors. Nutrients 11, 2995 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tuček, S. Choline acetyltransferase and the synthesis of acetylcholine. In The Cholinergic Synapse (ed. Whittaker, V. P.) 125–165 (Springer Berlin Heidelberg, 1988).

Carlson, A. B. & Kraus, G. P. Physiology, Cholinergic Receptors (StatPearls Publishing, 2022).

Bunge, R., Johnson, M. & Ross, C. D. Nature and nurture in development of the autonomic neuron. Science 199, 1409–1416 (1978).

Article  CAS  PubMed  Google Scholar 

Everitt, B. J. & Robbins, T. W. Central cholinergic systems and cognition. Annu. Rev. Psychol. 48, 649–684 (1997).

Article  CAS  PubMed  Google Scholar 

Gallagher, M. & Colombo, P. J. Ageing: the cholinergic hypothesis of cognitive decline. Curr. Opin. Neurobiol. 5, 161–168 (1995).

Article  CAS  PubMed  Google Scholar 

Brookes, S. J. H., Steele, P. A. & Costa, M. Identification and immunohistochemistry of cholinergic and non-cholinergic circular muscle motor neurons in the guinea-pig small intestine. Neuroscience 42, 863–878 (1991).

Article  CAS  PubMed  Google Scholar 

Silman, I. & Sussman, J. L. Acetylcholinesterase: ‘classical’ and ‘non-classical’ functions and pharmacology. Curr. Opin. Pharmacol. 5, 293–302 (2005).

Article  CAS  PubMed  Google Scholar 

Soreq, H. & Seidman, S. Acetylcholinesterase — new roles for an old actor. Nat. Rev. Neurosci. 2, 294–302 (2001).

Article  CAS  PubMed  Google Scholar 

Okuda, T. et al. Identification and characterization of the high-affinity choline transporter. Nat. Neurosci. 3, 120–125 (2000).

Article  CAS  PubMed  Google Scholar 

Apparsundaram, S., Ferguson, S. M., George, A. L. Jr & Blakely, R. D. Molecular cloning of a human, hemicholinium-3-sensitive choline transporter. Biochem. Biophys. Res. Commun. 276, 862–867 (2000).

Article  CAS  PubMed  Google Scholar 

Okuda, T. & Haga, T. Functional characterization of the human high‐affinity choline transporter. FEBS Lett. 484, 92–97 (2000).

Article  CAS  PubMed  Google Scholar 

Okuda, T. & Haga, T. High-affinity choline transporter. Neurochem. Res. 28, 483–488 (2003).

Article  CAS  PubMed  Google Scholar 

Haga, T. Synthesis and release of [14C]acetylcholine in synaptosomes. J. Neurochem. 18, 781–798 (1971).

Article  CAS  PubMed  Google Scholar 

Kuhar, M. J. & Murrin, L. C. Sodium-dependent, high affinity choline uptake. J. Neurochem. 30, 15–21 (1978).

Article  CAS  PubMed  Google Scholar 

Ferguson, S. M. et al. Lethal impairment of cholinergic neurotransmission in hemicholinium-3-sensitive choline transporter knockout mice. Proc. Natl Acad. Sci. USA 101, 8762–8767 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barwick, K. E. et al. Defective presynaptic choline transport underlies hereditary motor neuropathy. Am. J. Hum. Genet. 91, 1103–1107 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bauché, S. et al. Impaired presynaptic high-affinity choline transporter causes a congenital myasthenic syndrome with episodic apnea. Am. J. Hum. Genet 99, 753–761 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Neumann, S. A. et al. Polymorphic variation in choline transporter gene (CHT1) is associated with early, subclinical measures of carotid atherosclerosis in humans. Int. J. Cardiovasc. Imaging 28, 243–250 (2012).

Article  PubMed  Google Scholar 

Hahn, M. K. et al. Multivariate permutation analysis associates multiple polymorphisms with subphenotypes of major depression. Genes Brain Behav. 7, 487–495 (2008).

Article  CAS  PubMed  Google Scholar 

Bissette, G., Seidler, F. J., Nemeroff, C. B. & Slotkin, T. A. High affinity choline transporter status in Alzheimer’s disease tissue from rapid autopsy. Ann. N. Y. Acad. Sci. 777, 197–204 (1996).

Article  CAS  PubMed  Google Scholar 

Pascual, J. et al. High-affinity choline uptake carrier in Alzheimer’s disease: implications for the cholinergic hypothesis of dementia. Brain Res. 552, 170–174 (1991).

Article  CAS  PubMed  Google Scholar 

Ferreira-Vieira, T. H., Guimaraes, I. M., Silva, F. R. & Ribeiro, F. M. Alzheimer’s disease: targeting the cholinergic system. Curr. Neuropharmacol. 14, 101–115 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ribeiro, F. M. et al. The “ins” and “outs” of the high-affinity choline transporter CHT1. J. Neurochem. 97, 1–12 (2006).

Article  CAS  PubMed  Google Scholar 

Haga, T. Molecular properties of the high-affinity choline transporter CHT1. J. Biochem. 156, 181–194 (2014).

Article  CAS  PubMed  Google Scholar 

Uchida, Y. et al. Expression and functional characterization of choline transporter in human keratinocytes. J. Pharm. Sci. 109, 102–109 (2009).

Article  CAS  Google Scholar 

Mineur, Y. S. et al. Cholinergic signaling in the hippocampus regulates social stress resilience and anxiety-and depression-like behavior. Proc. Natl Acad. Sci. 110, 3573–3578 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Picciotto, M. R., Higley, M. J. & Mineur, Y. S. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron 76, 116–129 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barker, L. & Mittag, T. Comparative studies of substrates and inhibitors of choline transport and choline acetyltransferase. J. Pharmacol. Exp. Ther. 192, 86–94 (1975).

CAS  PubMed  Google Scholar 

Vickroy, T. W. et al. Quantitative light microscopic autoradiography of [3H] hemicholinium-3 binding sites in the rat central nervous system: a novel biochemical marker for mapping the distribution of cholinergic nerve terminals. Brain Res. 329, 368–373 (1985).

Article  CAS  PubMed  Google Scholar 

Patrice, G., Pierre, L., Jean, R., Jean Claude, B. & Jacques, G. Inhibition by hemicholinium-3 of [14C] acetylcholine synthesis and [3H] choline high-affinity uptake in rat striatal synaptosomes. Mol. Pharmacol. 9, 630 (1973).

Google Scholar 

Payette, D. J., Xie, J. & Guo, Q. Reduction in CHT1-mediated choline uptake in primary neurons from presenilin-1 M146V mutant knock-in mice. Brain Res. 1135, 12–21 (2007).

Article  CAS  PubMed  Google Scholar 

Cummings, M. D., Farnum, M. A. & Nelen, M. I. Universal screening methods and applications of ThermoFluor. SLAS Discov. 11, 854–863 (2006).

Article  CAS  Google Scholar 

Boivin, S., Kozak, S. & Meijers, R. Optimization of protein purification and characterization using Thermofluor screens. Protein Expr. Purif. 91, 192–206 (2013).

Article  CAS  PubMed  Google Scholar 

Okuda, T. et al. Transmembrane topology and oligomeric structure of the high-affinity choline transporter. J. Biol. Chem. 287, 42826–42834 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Manaker, S., Wieczorek, C. M. & Rainbow, T. C. Identification of sodium-dependent, high-affinity choline uptake sites in rat brain with [3H]hemicholinium-3. J. Neurochem. 46, 483–488 (1986).

留言 (0)

沒有登入
gif