Profiling of long non-coding RNAs in hippocampal–entorhinal system subfields: impact of RN7SL1 on neuroimmune response modulation in Alzheimer’s disease

United Nations Department of Economic and Social Affairs PD. World Population Ageing 2020: highlights. Living Arrangements of Older Persons; 2020.

Graff-Radford J, Yong KXX, Apostolova LG, Bouwman FH, Carrillo M, Dickerson BC, Rabinovici GD, Schott JM, Jones DT, Murray ME. New insights into atypical Alzheimer’s disease in the era of biomarkers. Lancet Neurol. 2021;20(3):222–34.

Article  PubMed  PubMed Central  Google Scholar 

Hardy J, Schott JM. Identifying genetic risk for amyloid-related imaging abnormalities. Neurology. 2024;102(3):e208096.

Article  PubMed  Google Scholar 

Giap BT, Jong CN, Ricker JH, Cullen NK, Zafonte RD. The hippocampus: anatomy, pathophysiology, and regenerative capacity. J Head Trauma Rehabil. 2000;15(3):875–94.

Article  CAS  PubMed  Google Scholar 

Murphy C. Olfactory and other sensory impairments in Alzheimer disease. Nat Reviews Neurol. 2019;15(1):11–24.

Article  CAS  Google Scholar 

Yoon J-H, Abdelmohsen K, Gorospe M. Posttranscriptional gene regulation by long noncoding RNA. J Mol Biol. 2013;425(19):3723–30.

Article  CAS  PubMed  Google Scholar 

Mattick JS. The central role of RNA in human development and cognition. FEBS Lett. 2011;585(11):1600–16.

Article  CAS  PubMed  Google Scholar 

Magistri M, Velmeshev D, Makhmutova M, Faghihi MA. Transcriptomics profiling of Alzheimer’s Disease Reveal Neurovascular defects, altered Amyloid-β homeostasis, and deregulated expression of long noncoding RNAs. J Alzheimer’s Disease: JAD. 2015;48(3):647–65.

Article  CAS  PubMed  Google Scholar 

Modarresi F, Faghihi MA, Patel NS, Sahagan BG, Wahlestedt C, Lopez-Toledano MA. Knockdown of BACE1-AS nonprotein-coding transcript modulates Beta-amyloid-related hippocampal neurogenesis. Int J Alzheimers Dis. 2011;2011:929042.

PubMed  PubMed Central  Google Scholar 

Zeng T, Ni H, Yu Y, Zhang M, Wu M, Wang Q, Wang L, Xu S, Xu Z, Xu C, et al. BACE1-AS prevents BACE1 mRNA degradation through the sequestration of BACE1-targeting miRNAs. J Chem Neuroanat. 2019;98:87–96.

Article  CAS  PubMed  Google Scholar 

Ke S, Yang Z, Yang F, Wang X, Tan J, Liao B. Long noncoding RNA NEAT1 aggravates Aβ-Induced neuronal damage by targeting miR-107 in Alzheimer’s Disease. Yonsei Med J. 2019;60(7):640.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Puthiyedth N, Riveros C, Berretta R, Moscato P. Identification of differentially expressed genes through Integrated Study of Alzheimer’s disease affected brain regions. PLoS ONE. 2016;11(4):e0152342.

Article  PubMed  PubMed Central  Google Scholar 

Massone S, Vassallo I, Fiorino G, Castelnuovo M, Barbieri F, Borghi R, Tabaton M, Robello M, Gatta E, Russo C, et al. 17A, a novel non-coding RNA, regulates GABA B alternative splicing and signaling in response to inflammatory stimuli and in Alzheimer disease. Neurobiol Dis. 2011;41(2):308–17.

Article  CAS  PubMed  Google Scholar 

Ciarlo E, Massone S, Penna I, Nizzari M, Gigoni A, Dieci G, Russo C, Florio T, Cancedda R, Pagano A. An intronic ncRNA-dependent regulation of SORL1 expression affecting abeta formation is upregulated in post-mortem Alzheimer’s disease brain samples. Dis Model Mech. 2013;6(2):424–33.

CAS  PubMed  Google Scholar 

Cortini F, Roma F, Villa C. Emerging roles of long non-coding RNAs in the pathogenesis of Alzheimer’s disease. Ageing Res Rev. 2019;50:19–26.

Article  CAS  PubMed  Google Scholar 

Liu Y, Tan Y, Zhang Z, Li H, Yi M, Zhang Z, Hui S, Peng W. Neuroimmune mechanisms underlying Alzheimer’s disease: insights into central and peripheral immune cell crosstalk. Ageing Res Rev. 2023;84:101831.

Article  CAS  PubMed  Google Scholar 

Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer’s Dement (New York N Y). 2018;4:575–90.

Google Scholar 

Newcombe EA, Camats-Perna J, Silva ML, Valmas N, Huat TJ, Medeiros R. Inflammation: the link between comorbidities, genetics, and Alzheimer’s disease. J Neuroinflamm. 2018;15(1):276.

Article  Google Scholar 

Al-Ghraiybah NF, Wang J, Alkhalifa AE, Roberts AB, Raj R, Yang E, Kaddoumi A. Glial cell-mediated neuroinflammation in Alzheimer’s Disease. Int J Mol Sci. 2022;23(18):10572.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Colonna M, Butovsky O. Microglia function in the Central Nervous System during Health and Neurodegeneration. Annu Rev Immunol. 2017;35:441–68.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hickman SE, Allison EK, El Khoury J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci. 2008;28(33):8354–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chakrabarty P, Jansen-West K, Beccard A, Ceballos-Diaz C, Levites Y, Verbeeck C, Zubair AC, Dickson D, Golde TE, Das P. Massive gliosis induced by interleukin-6 suppresses Abeta deposition in vivo: evidence against inflammation as a driving force for amyloid deposition. FASEB J. 2010;24(2):548–59.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krabbe G, Halle A, Matyash V, Rinnenthal JL, Eom GD, Bernhardt U, Miller KR, Prokop S, Kettenmann H, Heppner FL. Functional impairment of microglia coincides with Beta-amyloid deposition in mice with Alzheimer-like pathology. PLoS ONE. 2013;8(4):e60921.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer’s disease. J Cell Biol. 2018;217(2):459–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pozueta J, Lefort R, Ribe EM, Troy CM, Arancio O, Shelanski M. Caspase-2 is required for dendritic spine and behavioural alterations in J20 APP transgenic mice. Nature Communications 2013, 4:1939.

D’Amelio M, Cavallucci V, Middei S, Marchetti C, Pacioni S, Ferri A, Diamantini A, De Zio D, Carrara P, Battistini L, et al. Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer’s disease. Nat Neurosci. 2011;14(1):69–76.

Article  PubMed  Google Scholar 

Dorostkar MM, Zou C, Blazquez-Llorca L, Herms J. Analyzing dendritic spine pathology in Alzheimer’s disease: problems and opportunities. Acta Neuropathol. 2015;130(1):1–19.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B, et al. A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease. Cell. 2017;169(7):1276–e12901217.

Article  CAS  PubMed  Google Scholar 

Martins-Ferreira R, Leal B, Costa PP, Ballestar E. Microglial innate memory and epigenetic reprogramming in neurological disorders. Prog Neurobiol. 2021;200:101971.

Article  CAS  PubMed  Google Scholar 

Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Dickson DW, Duyckaerts C, Frosch MP, Masliah E, Mirra SS, et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol. 2012;123(1):1–11.

Article  CAS  PubMed  Google Scholar 

Luo D, Li J, Liu H, Wang J, Xia Y, Qiu W, Wang N, Wang X, Wang X, Ma C et al. Integrative Transcriptomic Analyses of Hippocampal–Entorhinal System Subfields Identify Key Regulators in Alzheimer’s Disease. Adv Sci 2023, 10(22).

Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33(3):290–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beck MW. ggord: Ordination Plots with ggplot2; 2022.

Leek JT, Johnson WE, Parker HS, Fertig EJ, Jaffe AE, Zhang Y, Storey JD, Torres LC. sva: Surrogate Variable Analysis; 2023.

Love MI, Huber W, Anders S. Moderated estimation of Fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.

Article  PubMed  PubMed Central  Google Scholar 

Gu Z, Gu L, Eils R, Schlesner M, Brors B. Circlize implements and enhances circular visualization in R. Bioinformatics. 2014;30(19):2811–2.

Article  CAS  PubMed  Google Scholar 

Chen H, Boutros PC. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics. 2011;12:35.

Article  PubMed  PubMed Central  Google Scholar 

Wickham H. ggplot2: Elegant Graphics for Data Analysis. In: Use R! 2nd edn. Cham: Springer International Publishing: Imprint: Springer,; 2016: 1 online resource (XVI, 260 pages 232 illustrations, 140 illustrations in color.

Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics. 2017;33(18):2938–40.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif