Treatment of Syringomyelia Characterized by Focal Dilatation of the Central Canal Using Mesenchymal Stem Cells and Neural Stem Cells

Ciaramitaro P, Massimi L, Bertuccio A, Solari A, Farinotti M, Peretta P, et al. Diagnosis and treatment of Chiari malformation and syringomyelia in adults: international consensus document. Neurol Sci. 2022;43:1327–42.

Article  PubMed  Google Scholar 

Giner J, Pérez López C, Hernández B, Gómez de la Riva Á, Isla A, Roda JM. Update on the pathophysiology and management of syringomyelia unrelated to Chiari malformation. Neurología (Engl Ed). 2019;34:318–25.

Article  CAS  Google Scholar 

Tsitouras V, Sgouros S. Syringomyelia and tethered cord in children. Childs Nerv Syst. 2013;29:1625–34.

Article  PubMed  Google Scholar 

Vandertop WP. Syringomyelia. Neuropediatrics. 2014;45:3–9.

PubMed  Google Scholar 

Xu N, Xu T, Mirasol R, Holmberg L, Vincent PH, Li X, et al. Transplantation of human neural precursor cells reverses syrinx growth in a rat model of post-traumatic syringomyelia. Neurotherapeutics. 2021;18:1257–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tingting Xu, Li X, Guo Y, Uhlin E, Holmberg L, Mitra S, et al. Multiple therapeutic effects of human neural stem cells derived from induced pluripotent stem cells in a rat model of post-traumatic syringomyelia. EBioMedicine. 2022;77:103882.

Article  Google Scholar 

Cofano F, Boido M, Monticelli M, Zenga F, Ducati A, Vercelli A, et al. Mesenchymal stem cells for spinal cord injury: current options, limitations, and future of cell therapy. Int J Mol Sci. 2019;20:2698.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pereira IM, Marote A, Salgado AJ, Silva NA. Filling the gap: neural stem cells as a promising therapy for spinal cord injury. Pharmaceuticals (Basel). 2019;12:65.

Article  CAS  PubMed  Google Scholar 

Damianakis EI, Benetos IS, Evangelopoulos DS, Kotroni A, Vlamis J, Pneumaticos SG. Stem cell therapy for spinal cord injury: a review of recent clinical trials. Cureus. 2022;14: e24575.

PubMed  PubMed Central  Google Scholar 

Vaquero J, Zurita M, Rico MA, Aguayo C, Fernandez C, Rodriguez-Boto G, et al. Cell therapy with autologous mesenchymal stromal cells in post-traumatic syringomyelia. Cytotherapy. 2018;20:796–805.

Article  PubMed  Google Scholar 

Xie JL, Wang XR, Li MM, Tao ZH, Teng WW, Saijilafu. Mesenchymal stromal cell therapy in spinal cord injury: mechanisms and prospects. Front Cell Neurosci. 2022;16:862673.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kadoya K, Lu P, Nguyen K, Lee-Kubli C, Kumamaru H, Yao L, et al. Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration. Nat Med. 2016;22:479–87.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rosenzweig ES, Brock JH, Lu P, Kumamaru H, Salegio EA, Kadoya K, et al. Restorative effects of human neural stem cell grafts on the primate spinal cord. Nat Med. 2018;24:484–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahn H, Lee SY, Jung WJ, Lee KH. Treatment of syringomyelia using uncultured umbilical cord mesenchymal stem cells: a case report and review of literature. World J Stem Cells. 2022;14:303–9.

Article  PubMed  PubMed Central  Google Scholar 

Zhao Z, Wei Xu, Xie J, Wang Y, Li T, Zhang Y, et al. Bone marrow-derived mesenchymal stem cells (BM-MSCs) inhibit apoptosis of spinal cord cells in a kaolin-induced syringomyelia-associated scoliosis rabbit model. Int J Clin Exp Pathol. 2018;11:1890–9.

PubMed  PubMed Central  Google Scholar 

Ma L, Yao Q, Zhang C, Li M, Cheng L, Jian F. Chronic extradural compression of spinal cord leads to syringomyelia in rat model. Fluids Barriers CNS. 2020;17:50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan Y, Tang X, Bai YF, Wang S, An J, Wu Y, et al. Dopaminergic precursors differentiated from human blood-derived induced neural stem cells improve symptoms of a mouse Parkinson’s disease model. Theranostics. 2018;8:4679–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li M, Wang Z, Zheng T, Huang T, Liu B, Han D, et al. characterization of human-induced neural stem cells and derivatives following transplantation into the central nervous system of a nonhuman primate and rats. Stem Cells Int. 2022;2022:1396735.

Article  PubMed  PubMed Central  Google Scholar 

Meletis K, Barnabe-Heider F, Carlen M, Evergren E, Tomilin N, Shupliakov O, et al. Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol. 2008;6: e182.

Article  PubMed  PubMed Central  Google Scholar 

Carvalho-Paulo D, Bento Torres Neto J, Filho CS, de Oliveira TCG, de Sousa AA, Dos Reis RR, et al. Microglial morphology across distantly related species: phylogenetic, environmental and age influences on microglia reactivity and surveillance states. Front Immunol. 2021;12:683026.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boche D, Perry VH, Nicoll JA. Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol. 2013;39:3–18.

Article  CAS  PubMed  Google Scholar 

Tang Y, Le W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol. 2016;53:1181–94.

Article  CAS  PubMed  Google Scholar 

Kobashi S, Terashima T, Katagi M, Nakae Y, Okano J, Suzuki Y, et al. Transplantation of M2-deviated microglia promotes recovery of motor function after spinal cord injury in mice. Mol Ther. 2020;28:254–65.

Article  CAS  PubMed  Google Scholar 

Bellver-Landete V, Bretheau F, Mailhot B, Vallieres N, Lessard M, Janelle ME, et al. Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. Nat Commun. 2019;10:518.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brennan FH, Li Y, Wang C, Ma A, Guo Q, Li Y, et al. Microglia coordinate cellular interactions during spinal cord repair in mice. Nat Commun. 2022;13:4096.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kohno K, Shirasaka R, Yoshihara K, Mikuriya S, Tanaka K, Takanami K, et al. A spinal microglia population involved in remitting and relapsing neuropathic pain. Science. 2022;376:86–90.

Article  CAS  PubMed  Google Scholar 

Shenoy VS, Sampath R. Syringomyelia. Treasure Island: StatPearls; 2023.

Google Scholar 

Kordelas L, Rebmann V, Ludwig AK, Radtke S, Ruesing J, Doeppner TR, et al. MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia. 2014;28:970–3.

Article  CAS  PubMed  Google Scholar 

Liau LL, Looi QH, Chia WC, Subramaniam T, Ng MH, Law JX. Treatment of spinal cord injury with mesenchymal stem cells. Cell Biosci. 2020;10:112.

Article  PubMed  PubMed Central  Google Scholar 

de Freria CM, Van Niekerk E, Blesch A, Lu P. Neural stem cells: promoting axonal regeneration and spinal cord connectivity. Cells. 2021;10:3296.

Article  PubMed  PubMed Central  Google Scholar 

Yousefifard M, Rahimi-Movaghar V, Nasirinezhad F, Baikpour M, Safari S, Saadat S, et al. Neural stem/progenitor cell transplantation for spinal cord injury treatment; a systematic review and meta-analysis. Neuroscience. 2016;322:377–97.

Article  CAS  PubMed  Google Scholar 

Matyas JJ, Stewart AN, Goldsmith A, Nan Z, Skeel RL, Rossignol J, et al. Effects of bone-marrow-derived MSC transplantation on functional recovery in a rat model of spinal cord injury: comparisons of transplant locations and cell concentrations. Cell Transplant. 2017;26:1472–82.

Article  PubMed  PubMed Central  Google Scholar 

Nelles DG, Hazrati LN. Ependymal cells and neurodegenerative disease: outcomes of compromised ependymal barrier function. Brain Commun. 2022;4:fcac288.

Article  PubMed  PubMed Central  Google Scholar 

Saunders NR, Liddelow SA, Dziegielewska KM. Barrier mechanisms in the developing brain. Front Pharmacol. 2012;3:46.

Article  PubMed  PubMed Central  Google Scholar 

Gilbert EAB, Lakshman N, Lau KSK, Morshead CM. Regulating endogenous neural stem cell activation to promote spinal cord injury repair. Cells. 2022;11:846.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang F, Gao T, Wang W, Wang L, Xie Y, Tai C, et al. Engineered basic fibroblast growth factor-overexpressing human umbilical cord-derived mesenchymal stem cells improve the proliferation and neuronal differentiation of endogenous neural stem cells and functional recovery of spinal cord injury by activating the PI3K-Akt-GSK-3beta signaling pathway. Stem Cell Res Ther. 2021;12:468.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif