The AccelerAge framework: a new statistical approach to predict biological age based on time-to-event data

López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: an expanding universe. Cell. 2023.

Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, Franceschi C, Lithgow GJ, Morimoto RI, Pessin JE. Geroscience: linking aging to chronic disease. Cell. 2014;159(4):709–13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lowsky DJ, Olshansky SJ, Bhattacharya J, Goldman DP. Heterogeneity in healthy aging. J Gerontol Ser A Biomed Sci Med Sci. 2014;69(6):640–9.

Article  Google Scholar 

Partridge L, Deelen J, Slagboom PE. Facing up to the global challenges of ageing. Nature. 2018;561(7721):45–56.

Article  CAS  PubMed  Google Scholar 

Jylhävä J, Pedersen NL, Hägg S. Biological age predictors. EBioMedicine. 2017;21:29–36.

Article  PubMed  PubMed Central  Google Scholar 

Moreira T. Anticipatory measure: Alex Comfort, experimental gerontology and the measurement of senescence. Stud Hist Philos Sci Part C Stud Hist Philos Biol Biomed Sci. 2019;77: 101179.

Article  Google Scholar 

Comfort A. Test-battery to measure ageing-rate in man. The Lancet. 1969;294(7635):1411–5.

Article  Google Scholar 

Rutledge J, Oh H, Wyss-Coray T. Measuring biological age using omics data. Nat Rev Genet. 2022; 1–13.

Benjamin H. Biologic versus chronologic age. J Gerontol. 1947;2(3):217–27.

Article  CAS  PubMed  Google Scholar 

Hollingsworth JW, Hashizume A, Jablon S. Correlations between tests of aging in Hiroshima subjects-an attempt to define “physiologic age’’. Yale J Biol Med. 1965;38(1):11.

CAS  PubMed  PubMed Central  Google Scholar 

Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):1–20.

Article  Google Scholar 

Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan J-B, Gao Y. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49(2):359–67.

Article  CAS  PubMed  Google Scholar 

Marioni RE, Shah S, McRae AF, Chen BH, Colicino E, Harris SE, Gibson J, Henders AK, Redmond P, Cox SR. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 2015;16(1):1–12.

Article  CAS  Google Scholar 

Peters MJ, Joehanes R, Pilling LC, Schurmann C, Conneely KN, Powell J, Reinmaa E, Sutphin GL, Zhernakova A, Schramm K. The transcriptional landscape of age in human peripheral blood. Nat Commun. 2015;6(1):1–14.

Article  Google Scholar 

Van Den Akker EB, Trompet S, Barkey Wolf JJ, Beekman M, Suchiman HED, Deelen J, Asselbergs FW, Boersma E, Cats D, Elders PM. Metabolic age based on the BBMRI-NL 1H-NMR metabolomics repository as biomarker of age-related disease. Circul Genom Precis Med. 2020;13(5):541–7.

Article  Google Scholar 

Kristic J, Vuckovic F, Menni C, Klaric L, Keser T, Beceheli I, Pucic-Bakovic M, Novokmet M, Mangino M, Thaqi K. Glycans are a novel biomarker of chronological and biological ages. J Gerontol Ser A. 2014;69(7):779–89.

Article  CAS  Google Scholar 

Tanaka T, Biancotto A, Moaddel R, Moore AZ, Gonzalez-Freire M, Aon MA, Candia J, Zhang P, Cheung F, Fantoni G. Plasma proteomic signature of age in healthy humans. Aging Cell. 2018;17(5):12799.

Article  Google Scholar 

Galkin F, Mamoshina P, Aliper A, Putin E, Moskalev V, Gladyshev VN, Zhavoronkov A. Human gut microbiome aging clock based on taxonomic profiling and deep learning. iScience. 2020;3(6): 101199.

Article  Google Scholar 

Sluiskes MH, Goeman JJ, Beekman M, Slagboom PE, Putter H, Rodriguez-Girondo M. Clarifying the biological and statistical assumptions of cross-sectional biological age predictors. bioRxiv, 2023;2023–01.

Hillary RF, Stevenson AJ, McCartney DL, Campbell A, Walker RM, Howard DM, Ritchie CW, Horvath S, Hayward C, McIntosh AM. Epigenetic measures of ageing predict the prevalence and incidence of leading causes of death and disease burden. Clin Epigenetics. 2020;12(1):1–12.

Article  Google Scholar 

Maddock J, Castillo-Fernandez J, Wong A, Cooper R, Richards M, Ong KK, Ploubidis GB, Goodman A, Kuh D, Bell JT. DNA methylation age and physical and cognitive aging. J Gerontol Ser A. 2020;75(3):504–11.

CAS  Google Scholar 

McCrory C, Fiorito G, Hernandez B, Polidoro S, O’Halloran AM, Hever A, Ni Cheallaigh C, Lu AT, Horvath S, Vineis P. GrimAge outperforms other epigenetic clocks in the prediction of age-related clinical phenotypes and all-cause mortality. J Gerontol Ser A. 2021;76(5):741–9.

Article  Google Scholar 

Kuiper LM, Polinder-Bos HA, Bizzarri D, Vojinovic D, Vallerga CL, Beekman M, Dollé ME, Ghanbari M, Voortman T, Reinders MJ, et al. Epigenetic and metabolomic biomarkers for biological age: a comparative analysis of mortality and frailty risk. J Gerontol Ser A 2023;137.

Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, Hou L, Baccarelli AA, Stewart JD, Li Y. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018;10(4):573.

Article  PubMed  Google Scholar 

Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, Hou L, Baccarelli AA, Li Y, Stewart JD. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY). 2019;11(2):303.

Article  CAS  PubMed  Google Scholar 

Lu AT, Binder AM, Zhang J, Yan Q, Reiner AP, Cox SR, Corley J, Harris SE, Kuo P-L, Moore AZ. Dna methylation grimage version 2. Aging (Albany NY). 2022;14(23):9484.

CAS  PubMed  Google Scholar 

Wei L-J. The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis. Stat Med. 1992;11(14–15):1871–9.

Article  CAS  PubMed  Google Scholar 

Cox DR. Regression models and life-tables. J Roy Stat Soc Ser B (Methodol). 1972;34(2):187–202.

Google Scholar 

Swindell WR. Accelerated failure time models provide a useful statistical framework for aging research. Exp Gerontol. 2009;44(3):190–200.

Article  PubMed  Google Scholar 

Olshansky SJ, Carnes BA. Ever since Gompertz. Demography. 1997;34(1):1–15.

Article  CAS  PubMed  Google Scholar 

Gompertz B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos Trans R Soc Lond. 1825;115:513–85.

Google Scholar 

Gavrilov LA, Gavrilova NS. Mortality measurement at advanced ages: a study of the Social Security Administration Death Master File. N Am Actuar J. 2011;15(3):432–47.

Article  PubMed  PubMed Central  Google Scholar 

Böhnstedt M, Gampe J, Putter H. Information measures and design issues in the study of mortality deceleration: findings for the gamma-Gompertz model. Lifetime Data Anal. 2021;27(3):333–56.

Article  PubMed  PubMed Central  Google Scholar 

Hougaard P. Fundamentals of survival data. Biometrics. 1999;55(1):13–22.

Article  CAS  PubMed  Google Scholar 

Korn EL, Graubard BI, Midthune D. Time-to-event analysis of longitudinal follow-up of a survey: choice of the time-scale. Am J Epidemiol. 1997;145(1):72–80.

Article  CAS  PubMed  Google Scholar 

Thiébaut AC, Bénichou J. Choice of time-scale in Cox’s model analysis of epidemiologic cohort data: a simulation study. Stat Med. 2004;23(24):3803–20.

Article  PubMed  Google Scholar 

Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, Pencina MJ, Kattan MW. Assessing the performance of prediction models: a framework for some traditional and novel measures. Epidemiology (Cambridge, Mass). 2010;21(1):128.

Article  PubMed  Google Scholar 

Uno H, Cai T, Pencina MJ, D’Agostino RB, Wei L-J. On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data. Stat Med. 2011;30(10):1105–17.

Article  PubMed  PubMed Central  Google Scholar 

Bender R, Augustin T, Blettner M. Generating survival times to simulate Cox proportional hazards models. Stat Med. 2005;24(11):1713–23.

Article  PubMed  Google Scholar 

Broström G. Event history analysis with R. 2nd ed. Boca Raton: Chapman and Hall/CRC; 2022. https://doi.org/10.1201/9780429503764.

Book  Google Scholar 

Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green J, Landray M. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12(3):1001779.

Article  Google Scholar 

Soininen P, Kangas AJ, Würtz P, Suna T, Ala-Korpela M. Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics. Circul Cardiovasc Genet. 2015;8(1):192–206.

Article  CAS  Google Scholar 

Würtz P, Kangas AJ, Soininen P, Lawlor DA, Davey Smith G, Ala-Korpela M. Quantitative serum nuclear magnetic resonance metabolomics in large-scale epidemiology: a primer on-omic technologies. Am J Epidemiol. 2017;186(9):1084–96.

Article  PubMed  PubMed Central  Google Scholar 

Julkunen H, Cichońska A, Tiainen M, Koskela H, Nybo K, Mäkelä V, Nokso-Koivisto J, Kristiansson K, Perola M, Salomaa V. Atlas of plasma nmr biomarkers for health and disease in 118,461 individuals from the UK biobank. Nat Commun. 2023;14(1):604.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Allen NE, Arnold M, Parish S, Hill M, Sheard S, Callen H, Fry D, Moffat S, Gordon M, Welsh S. Approaches to minimising the epidemiological impact of sources of systematic and random variation that may affect biochemistry assay data in uk biobank. Wellcome Open Res. 2021;5:222.

Article  PubMed 

留言 (0)

沒有登入
gif