Echolocating Bats Have Evolved Decreased Susceptibility to Noise-Induced Temporary Hearing Losses

Long GR (1994) Psychophysics. In: Fay RR, Popper AN (eds) Comparative hearing: mammals. Springer-Verlag, New York, pp 18–56

Chapter  Google Scholar 

 Slabbekoorn S, Dooling RJ, Popper AN, Fay RR (eds) (2018) Effects of anthropogenic noise on animals. Springer Nature New York and ASA Press. https://doi.org/10.1007/978-1-4939-8574-6

Griffin DR (1958) Listening in the dark. Yale University Press, reprinted Cornell University Press 1986

Simmons JA (1971) Echolocation in bats: signal processing of echoes for target range. Science 171(3974):925–928. https://doi.org/10.1126/science.171.3974.925

Article  CAS  PubMed  Google Scholar 

Dalland JI (1965) Hearing sensitivity in bats. Science 150:1185–1186. https://doi.org/10.1126/science.150.3700.1185

Article  CAS  PubMed  Google Scholar 

Long GR, Schnitzler H-U (1975) Behavioural audiograms from the bat, Rhinolophus ferrumequinum. J Comp Physiol 100:211–219. https://doi.org/10.1007/BF00614531

Article  Google Scholar 

Schnitzler H-U, Denzinger A (2011) Auditory fovea and Doppler shift compensation: adaptations for flutter detection in echolocating bats using CF-FM signals. J Comp Physiol A 197:541–559. https://doi.org/10.1007/s00359-010-0569-6

Article  Google Scholar 

Suga N, Neuweiler G, Möller J (1975) Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. IV. Properties of peripheral auditory neurons. J Comp Physiol 106:111–125. https://doi.org/10.1007/BF00606576

Article  Google Scholar 

Bruns V (1976) Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. II. Frequency mapping in the cochlea. J Comp Physiol 106:87–97. https://doi.org/10.1007/BF00606574

Article  Google Scholar 

Lattenkamp EZ, Nagy M, Drexl M, Vernes SC, Wiegrebe L, Knörnschild M (2021) Hearing sensitivity and amplitude coding in bats are differentially shaped by echolocation calls and social calls. Proc R Soc B 288:20202600. https://doi.org/10.1098/rspb.2020.2600

Article  PubMed  PubMed Central  Google Scholar 

Long GR (1977) Masked auditory thresholds from the bat Rhinolophus ferrumequinum. J Comp Physiol 116:247–255. https://doi.org/10.1007/BF00605406

Article  Google Scholar 

Fay RR (1988) Comparative psychophysics. Hear Res 34(3):295–305. https://doi.org/10.1016/0378-5955(88)90009-3

Article  CAS  PubMed  Google Scholar 

Suthers RA, Summers CA (1980) Behavioral audiogram and masked thresholds of the megachiropteran echolocating bat, Rousettus. J Comp Physiol 136:227–233. https://doi.org/10.1007/BF00657537

Article  Google Scholar 

Bohn KM, Boughman JW, Wilkinson GS, Moss CF (2004) Auditory sensitivity and frequency selectivity in greater spear-nosed bats suggest specializations for acoustic communication. J Comp Physiol A 190:185–192. https://doi.org/10.1007/s00359-003-0485-0

Article  CAS  Google Scholar 

von Stebut B, Schmidt S (2001) Frequency discrimination threshold at search call frequencies in the echolocating bat, Eptesicus fuscus. J Comp Physiol A 187:287–291. https://doi.org/10.1007/s00359-010-0200

Article  Google Scholar 

Long GR (1980) Further studies of masking in the greater horseshoe bat, Rhinolophus ferrumequinum. In: Busnel R-G, Fish JF (eds) Animal sonar systems. Plenum Press, New York, pp 929–932

Chapter  Google Scholar 

Griffin DR, McCue JJG, Grinnell AD (1963) The resistance of bats to jamming. J Exp Zool 152:229–250

Article  Google Scholar 

Holderied MW, Korine C, Fenton M, Parsons S, Robson S, Jones G (2005) Echolocation call intensity in the aerial hawking bat Eptesicus bottae (Vespertilionidae) studied using stereo videogrammetry. J Exp Biol 208:1321–1327. https://doi.org/10.1242/jeb.01528

Article  PubMed  Google Scholar 

Jakobsen L, Brinklov S, Surlykke A (2013) Intensity and directionality of bat echolocation signals. Front Physiol 4:89. https://doi.org/10.3389/fphys.2013.00089

Article  PubMed  PubMed Central  Google Scholar 

Stilz WP, Schnitzler H-U (2012) Estimation of the acoustic range of bat echolocation for extended targets. J Acoust Soc Am 132:1765–1775

Article  PubMed  Google Scholar 

Hartley D, Suthers R (1989) The sound emission pattern of the echolocating bat, Eptesicus fuscus. J Acoust Soc Am 85:1348–1351. https://doi.org/10.1121/1.397466

Article  Google Scholar 

Ghose K, Moss CF (2003) The sonar beam pattern of a flying bat as it tracks tethered insects. J Acoust Soc Am 114:1120–1131. https://doi.org/10.1121/1.1589754

Article  PubMed  Google Scholar 

Ming C, Bates ME, Simmons JA (2020) How frequency hopping suppresses pulse-echo ambiguity in bat biosonar. Proc Natl Acad Sci USA 17(29):17288–17295. https://doi.org/10.1073/pnas.2001105117

Article  CAS  Google Scholar 

Smotherman MS, Simmons AM, Simmons JA (2021) How noise affects bats and what it reveals about their biosonar systems. In: Lim B, Fenton B, Brigham M, Mistry S, Kurta A, Gillam E, Russell A, Ortega J (eds) 50 years of bat research: foundations and new frontiers. Springer-Verlag, New York, pp 61–76

Chapter  Google Scholar 

Hiryu S, Bates ME, Simmons JA, Riquimaroux H (2010) FM echolocating bats shift frequencies to avoid broadcast-echo ambiguity in clutter. Proc Natl Acad Sci USA 107:7048–7053. https://doi.org/10.1073/pnas.1000429107

Article  PubMed  PubMed Central  Google Scholar 

Moss CF, Bohn K, Gilkenson H, Surlykke A (2006) Active listening for spatial orientation in a complex auditory scene. PLoS Biol 4:615–626. https://doi.org/10.1371/journal.pbio.0040079

Article  CAS  Google Scholar 

Petrites AE, Eng OS, Mowlds DS, Simmons JA, DeLong CM (2009) Interpulse interval modulation by echolocating big brown bats (Eptesicus fuscus) in different densities of obstacle clutter. J Comp Physiol A 195:603–617. https://doi.org/10.1007/s00359-009-0435-6

Article  Google Scholar 

Kothari NB, Wohlgemuth MJ, Hulgard K, Surlykke A, Moss CF (2014) Timing matters: sonar call groups facilitate target localization in bats. Front Physiol 5:168. https://doi.org/10.3389/fphys.2014.00168

Article  PubMed  PubMed Central  Google Scholar 

Wheeler AR, Fulton KA, Gaudette JE, Simmons RA, Matsuo I, Simmons JA (2016) Echolocating big brown bats, Eptesicus fuscus, modulate pulse intervals to overcome range ambiguity in cluttered surroundings. Front Behav Neurosci 10:125. https://doi.org/10.3389/fnbeh.2016.00125

Article  PubMed  PubMed Central  Google Scholar 

Tuninetti A, Ming C, Hom KN, Simmons JA, Simmons AM (2021) Spatiotemporal patterning of acoustic gaze in echolocating bats navigating gaps in clutter. iScience 24:102353. https://doi.org/10.1016/j.isci.2021.102353

Article  PubMed  PubMed Central  Google Scholar 

Hage SR, Jiang T, Berquist SW, Feng J, Metzner W (2013) Ambient noise induces independent shifts in call frequency and amplitude within the Lombard effect in echolocating bats. Proc Natl Acad Sci 110:4063–4068. https://doi.org/10.1073/pnas.1211533110

Article  PubMed  PubMed Central  Google Scholar 

Lu M, Zhang G, Luo J (2020) Echolocating bats exhibit differential amplitude compensation for noise interference at a sub-call level. J Exp Biol 223(19):jeb225284. https://doi.org/10.1242/jeb.225284

Article  PubMed  Google Scholar 

Tressler J, Smotherman MS (2009) Context-dependent effects of noise on echolocation pulse characteristics in free-tailed bats. J Comp Physiol A 195:923–934. https://doi.org/10.1007/s00359-009-0468-x

Article  Google Scholar 

Simmons JA (2017) Noise interference with echo delay discrimination in bat sonar. J Acoust Soc Am 142(5):2942–2952. https://doi.org/10.1121/1.5010159

Article  CAS  PubMed  Google Scholar 

Amichai E, Blumrosen G, Yovel Y (2015) Calling louder and longer: how bats use biosonar under severe acoustic interference from other bats. Proc Biol Sci 282:20152064. https://doi.org/10.1098/rspb.2015.2064

Article  PubMed  PubMed Central  Google Scholar 

Luo J, Goerlitz HR, Brumm H, Wiegrebe L (2015) Linking the sender to the receiver: vocal adjustments by bats to maintain signal detection in noise. Sci Rep 5:18556. https://doi.org/10.1038/srep18556

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ryan AF, Kujawa SG, Hammill T, Le Prell C, Kil J (2016) Temporary and permanent noise-induced threshold shifts: a review of basic and clinical observations. Otol Neurotol 37(8):e271–e275. https://doi.org/10.1097/MAO.0000000000001071

Article  PubMed  PubMed Central  Google Scholar 

Southall BL, Bowles AE, Ellison WT, Finneran JJ, Gentry RL, Greene CR Jr, Kastak D, Ketten DR, Miller JH, Nachtigall PE, Richardson WJ, Thomas JA, Tyack PL (2007) Marine mammal noise exposure criteria: initial scientific recommendations. Aquat Mamm 33(4):411–521. https://doi.org/10.1578/AM.33.4.2007.411

Article  Google Scholar 

Heffner HE, Koay G, Heffner RS (2008) Comparison of behavioral and auditory brainstem response measures of threshold shift in rats exposed to loud sound. J Acoust Soc Am 124(2):1093–1104. https://doi.org/10.1121/1.2949518

Article  PubMed  PubMed Central  Google Scholar 

Simmons AM, Hom KN, Warnecke M, Simmons JA (2016) Broadband noise exposure does not affect hearing sensitivity in big brown bats (Eptesicus fuscus). J Exp Biol 219(7):1031–1040. https://doi.org/10.1242/jeb.135319

Article  PubMed  Google Scholar 

Simmons AM, Hom KN, Simmons JA (2017) Big brown bats (Eptesicus fuscus) maintain hearing sensitivity after exposure to intense band-limited noise. J Acoust Soc Am 141(3):1481–1489. https://doi.org/10.1121/1.4976820

Article 

留言 (0)

沒有登入
gif