Dong W (2015) Personal communication
Shera CA, Guinan JJ (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: A taxonomy for mammalian OAEs. J Acoust Soc Am 105:782–798
Shera CA (2004) Mechanisms of mammalian otoacoustic emission and their implications for the clinical utility of otoacoustic emissions. Ear Hear 25:86–97
Shera CA, Guinan JJ (2008) Mechanisms of mammalian otoacoustic emission. In: Manley GA, Fay RR, Popper AN (eds) Active Processes and Otoacoustic Emissions. Springer, New York, pp 305–342
Long GR, Talmadge CL, Lee J (2004) Using sweeping tones to evaluate DPOAE fine structure. Assoc Res Otolaryngol Abs 27:102
Neely ST, Dierking DM, Hoover BM, Gorga MP (2004) Fast DPOAE I/O measurements covering \(L_1\)-\(L_2\) stimulus level space. Assoc Res Otolaryngol Abs 27:100
Neely ST, Johnson TA, Gorga MP (2005) Distortion-product otoacoustic emission measured with continuously varying stimulus level. J Acoust Soc Am 117:1248–1259
Glavin CC, Dhar S, Goodman SS (2023) Measurement of swept level distortion product otoacoustic emission growth functions at multiple frequencies simultaneously. JASA Express Lett 3:064401
PubMed PubMed Central Google Scholar
Kemp DT (1978) Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 64:1386–1391
Christensen AT, Abdala C, Shera CA (2019) Variable-rate frequency sweeps and their application to the measurement of otoacoustic emissions. J Acoust Soc Am 146:3457–3465
ADS PubMed PubMed Central Google Scholar
Lorenz EM (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141
Knight RD, Kemp DT (2000) Indications of different distortion product otoacoustic emission mechanisms from a detailed \(f_1, f_2\) area study. J Acoust Soc Am 107:457–473
Knight RD, Kemp DT (2001) Wave and place fixed DPOAE maps of the human ear. J Acoust Soc Am 109:1513–1525
Stiepan S, Goodman SS, Dhar S (2022) Optimizing distortion product otoacoustic emission recordings in normal-hearing ears by adopting cochlear place-specific stimuli. J Acoust Soc Am 152:776–788
ADS PubMed PubMed Central Google Scholar
Raufer S, Abdala C, Kalluri R, Dhar S, Shera CA (2015) Measuring DPOAE area maps using continuously varying primary tones. Assoc Res Otolaryngol Abs 38:482
Abbott BP et al (2016) Observation of gravitational waves from a binary black hole merger. Phys Rev Lett 116:061102
ADS MathSciNet CAS PubMed Google Scholar
Abbott BP et al (2017) The basic physics of the binary black hole merger GW150914. Ann Phys (Berlin) 529:1600209
Drexl M, Faulstich M, von Stebut B, Radtke-Schuller S, Kössl M (2003) Distortion product otoacoustic emissions and auditory evoked potentials in the hedgehog tenrec, Echinops telfairi. J Assoc Res Otolaryngol 4:555–564
PubMed PubMed Central Google Scholar
Brinkløv S, Fenton MB, Ratcliffe JM (2013) Echolocation in oilbirds and swiftlets. Front Physiol 4:123
PubMed PubMed Central Google Scholar
Griffin DR (1944) Echolocation by blind men, bats, and radar. Science 29:589–590
Neumann J, Uppenkamp S, Kollmeier B (1994) Chirp evoked otoacoustic emissions. Hear Res 79:17–25
Keefe DH (1998) Double-evoked otoacoustic emissions. I. Measurement theory and nonlinear coherence. J Acoust Soc Am 103:3489–3498
Long GR, Talmadge CL, Lee J (2008) Measuring distortion-product otoacoustic emissions using continuously sweeping primaries. J Acoust Soc Am 124:1613–1626
Swift J (1726) Several remote nations of the world. . Benjamin Motte, London
Choi YS, Lee SY, Parham K, Neely ST, Kim DO (2008) Stimulus-frequency otoacoustic emission: Measurements in humans and simulations with an active cochlear model. J Acoust Soc Am 123:2651–2669
ADS PubMed PubMed Central Google Scholar
Shera CA, Abdala C (2016) Frequency shifts in distortion-product otoacoustic emissions evoked by swept tones. J Acoust Soc Am 140:936–944
ADS PubMed PubMed Central Google Scholar
Bennett CL, Özdamar Ö (2010) Swept-tone transient-evoked otoacoustic emissions. J Acoust Soc Am 128:1833–1844
Abdala C, Dhar S (2010) Distortion-product otoacoustic emission phase and component analysis in human newborns. J Acoust Soc Am 127:316–325
ADS PubMed PubMed Central Google Scholar
Shera CA, Guinan JJ (2003) Stimulus-frequency-emission group delay: A test of coherent reflection filtering and a window on cochlear tuning. J Acoust Soc Am 113:2762–2772
Joris PX, Bergevin C, Kalluri R, Mc Laughlin M, Michelet P, van der Heijden M, Shera CA (2011) Frequency selectivity in Old-World monkeys corroborates sharp cochlear tuning in humans. Proc Natl Acad Sci USA 108:17516–17520
ADS CAS PubMed PubMed Central Google Scholar
Shera CA, Guinan JJ, Oxenham AJ (2010) Otoacoustic estimation of cochlear tuning: Validation in the chinchilla. J Assoc Res Otolaryngol 11:343–365
PubMed PubMed Central Google Scholar
Dhar S, Rogers A, Abdala C (2011) Breaking away: Violation of distortion emission phase-frequency invariance at low frequencies. J Acoust Soc Am 129:3115–3122
ADS PubMed PubMed Central Google Scholar
Abdala C, Dhar S, Mishra S (2011) The breaking of cochlear scaling symmetry in human newborns and adults. J Acoust Soc Am 129:3104–3114
ADS PubMed PubMed Central Google Scholar
Christensen AT, Abdala C, Shera CA (2020) A cochlea with three parts? Evidence from otoacoustic emission phase in humans. J Acoust Soc Am 148:1585–1601
ADS PubMed PubMed Central Google Scholar
Christensen AT, Shera CA, Abdala C (2021) Extended low-frequency phase of the distortion-product otoacoustic emission in human newborns. JASA Expr Lett 1:014404
Kalluri R, Shera CA (2007) Near equivalence of human click-evoked and stimulus-frequency otoacoustic emissions. J Acoust Soc Am 121:2097–2110
Charaziak KK, Shera CA (2021) Reflection-source otoacoustic emissions evoked with clicks and frequency sweeps: Comparisons across levels. J Assoc Res Otolaryngol 22:641–658
PubMed PubMed Central Google Scholar
Recio A, Rhode WS (2000) Basilar membrane responses to broadband stimuli. J Acoust Soc Am 108:2281–2298
Whitehead ML, Stagner BB, Martin GK, Lonsbury-Martin BL (1996) Visualization of the onset of distortion-product otoacoustic emissions and measurement of their latency. J Acoust Soc Am 100:1663–1679
Kim DO (1980) Cochlear mechanics: Implications of electrophysiological and acoustical observations. Hear Res 2:297–317
Kemp DT, Brown AM (1983) An integrated view of cochlear mechanical nonlinearities observable from the ear canal. In: de Boer E, Viergever MA (eds) Mechanics of Hearing. Martinus Nijhoff, The Hague, pp 75–82
Kalluri R, Shera CA (2001) Distortion-product source unmixing: A test of the two-mechanism model for DPOAE generation. J Acoust Soc Am 109:622–637
Shera CA, Zweig G (1993) Noninvasive measurement of the cochlear traveling-wave ratio. J Acoust Soc Am 93:3333–3352
Kalluri R, Shera CA (2007) Comparing stimulus-frequency otoacoustic emissions measured by compression, suppression, and spectral smoothing. J Acoust Soc Am 122:3562–3575
Moleti A, Longo F, Sisto R (2012) Time-frequency domain filtering of evoked otoacoustic emissions. J Acoust Soc Am 132:2455–2467
Shera CA, Bergevin C (2012) Obtaining reliable phase-gradient delays from otoacoustic emission data. J Acoust Soc Am 132:927–943
ADS PubMed PubMed Central Google Scholar
Abdala C, Luo P, Shera CA (2016) Comparison of methods for DPOAE component separation. Assoc Res Otolaryngol Abs 39:PS664. Poster available at https://apg.mechanicsofhearing.org
Smith BK, Sieben UK, Kohlrausch A, Schroeder MW (1986) Phase effects in masking related to dispersion in the inner ear. J Acoust Soc Am 80:1631–1637
Kohlrausch A, Sander A (1995) Phase effects in masking related to dispersion in the inner ear. II. Masking period patterns of short targets. J Acoust Soc Am 97:1817–1829
留言 (0)