Mechanical Effects of Medical Device Attachment to Human Tympanic Membrane

Cofer S, Meyer A, Yoon D, Beebe D, Castro C, Rimell F, Belani K (2017) Tympanostomy tube placement in children using a single-pass tool with moderate sedation. Otolaryngol Neck Surg 157:533–535. https://doi.org/10.1177/0194599817707178

Article  Google Scholar 

Rosenfeld RM (2020) Tympanostomy tube controversies and issues: state-of-the-art review. Ear Nose Throat J 99:15S-21S. https://doi.org/10.1177/0145561320919656

Article  PubMed  Google Scholar 

Perkins R (1996) Earlens tympanic contact transducer: a new method of sound transduction to the human ear. Otolaryngol Head Neck Surg 114:720–728. https://doi.org/10.1016/S0194-5998(96)70092-X

Article  CAS  PubMed  Google Scholar 

Song Y-L, Jian J-T, Chen W-Z, Shih C-H, Chou Y-F, Liu T-C, Lee C-F (2013) The development of a non-surgical direct drive hearing device with a wireless actuator coupled to the tympanic membrane. Appl Acoust 74:1511–1518. https://doi.org/10.1016/j.apacoust.2013.06.014

Article  Google Scholar 

Liu H, Ge S, Cheng G, Yang J, Rao Z, Huang X (2014) Transducer type and design influence on the hearing loss compensation behaviour of the electromagnetic middle ear implant in a finite element analysis. Adv Mech Eng 6:867108. https://doi.org/10.1155/2014/867108

Article  Google Scholar 

Hamanishi S, Koike T, Matsuki H, Wada H (2004) A new electromagnetic hearing aid using lightweight coils to vibrate the ossicles. IEEE Trans Magn 40:3387–3393. https://doi.org/10.1109/TMAG.2004.834190

Article  Google Scholar 

Hong E-P, Kim M-K, Park I-Y, Lee S -h, Roh Y, Cho J-H (2007) Vibration modeling and design of piezoelectric floating mass transducer for implantable middle ear hearing devices. IEICE Trans Fundam Electron Commun Comput Sci E90-A:1620–1627. https://doi.org/10.1093/ietfec/e90-a.8.1620

Article  Google Scholar 

Pegan A et al (2019) Active middle ear Vibrant Soundbridge sound implant. Acta Clin Croat 58(2). https://doi.org/10.20471/acc.2019.58.02.20

Maftoon N, Funnell WRJ, Daniel SJ, Decraemer WF (2015) Finite-element modelling of the response of the gerbil middle ear to sound. J Assoc Res Otolaryngol 16:547–567. https://doi.org/10.1007/s10162-015-0531-y

Article  PubMed  PubMed Central  Google Scholar 

Frear DL, Guan X, Stieger C, Rosowski JJ, Nakajima HH (2018) Impedances of the inner and middle ear estimated from intracochlear sound pressures in normal human temporal bones. Hear Res 367:17–31

Article  PubMed  PubMed Central  Google Scholar 

Xue L, Liu H, Wang W, Yang J, Zhao Y, Huang X (2020) The role of third windows on human sound transmission of forward and reverse stimulations: a lumped-parameter approach. J Acoust Soc Am 147:1478–1490

Article  PubMed  Google Scholar 

Bernhard H, Stieger C, Perriard Y (2010) Design of a semi-implantable hearing device for direct acoustic cochlear stimulation. IEEE Trans Biomed Eng 58:420–428

Article  PubMed  Google Scholar 

Zhao F, Koike T, Wang J, Sienz H, Meredith R (2009) Finite element analysis of the middle ear transfer functions and related pathologies. Med Eng Phys 31:907–916. https://doi.org/10.1016/j.medengphy.2009.06.009

Article  PubMed  Google Scholar 

Funnell WR, Laszlo CA (1978) Modeling of the cat eardrum as a thin shell using the finite-element method. J Acoust Soc Am 63:1461–1467. https://doi.org/10.1121/1.381892

Article  CAS  PubMed  Google Scholar 

De Greef D, Aernouts J, Aerts J, Cheng JT, Horwitz R, Rosowski JJ, Dirckx JJJ (2014) Viscoelastic properties of the human tympanic membrane studied with stroboscopic holography and finite element modeling. Hear Res 312:69–80. https://doi.org/10.1016/j.heares.2014.03.002

Article  PubMed  PubMed Central  Google Scholar 

Gan RZ, Cheng T, Dai C, Yang F, Wood MW (2009) Finite element modeling of sound transmission with perforations of tympanic membrane. J Acoust Soc Am 126:243–253. https://doi.org/10.1121/1.3129129

Article  PubMed  PubMed Central  Google Scholar 

Ebrahimian A, Mohammadi H, Rosowski JJ, Cheng JT, Maftoon N (2023) Inaccuracies of deterministic finite-element models of human middle ear revealed by stochastic modelling. Sci Rep 13. https://doi.org/10.1038/s41598-023-34018-w

Ebrahimian A, Maftoon N (2021) Stochastic finite element modelling of human middle-ear. CMBES Proceedings 44

Gan RZ, Dai C, Wang X, Nakmali D, Wood MW (2010) A totally implantable hearing system – design and function characterization in 3D computational model and temporal bones. Hear Res 263:138–144. https://doi.org/10.1016/j.heares.2009.09.003

Article  PubMed  Google Scholar 

Wang X, Hu Y, Wang Z, Shi H (2011) Finite element analysis of the coupling between ossicular chain and mass loading for evaluation of implantable hearing device. Hear Res 280:48–57. https://doi.org/10.1016/j.heares.2011.04.012

Article  PubMed  Google Scholar 

Zhang X, Gan RZ (2011) A comprehensive model of human ear for analysis of implantable hearing devices. IEEE Trans Biomed Eng 58:3024–3027. https://doi.org/10.1109/TBME.2011.2159714

Article  PubMed  Google Scholar 

Nishihara S, Aritomo H, Goode RL (1993) Effect of changes in mass on middle ear function. Otolaryngol Neck Surg 109:899–910. https://doi.org/10.1177/019459989310900520

Article  CAS  Google Scholar 

Ebrahimian A, Mohammadi H, Maftoon N (2023) Relative importance and interactions of parameters of finite-element models of human middle ear. J Acoust Soc Am 154:619–634. https://doi.org/10.1121/10.0020273

Article  PubMed  Google Scholar 

Vlaming MSMG, Feenstra L (1986) Studies on the mechanics of the normal human middle ear. 11(5):11

Google Scholar 

Voss SE, Rosowski JJ, Merchant SN, Peake WT (2000) Acoustic responses of the human middle ear. Hear Res 150:43–69. https://doi.org/10.1016/S0378-5955(00)00177-5

Article  CAS  PubMed  Google Scholar 

Nicolas G, Fouquet T (2013) Adaptive mesh refinement for conformal hexahedralmeshes. Finite Elem Anal Des 67:1–12. https://doi.org/10.1016/j.finel.2012.11.008

Article  Google Scholar 

Victor A, Ribeiro J, Araújo FS (2019) Study of PDMS characterization and its applications in biomedicine: a review. J Mech Eng Biomech 4:1–9. https://doi.org/10.24243/JMEB/4.1.163

Sandra H, Kay DJ (2016) Tympanostomy tube selection: a review of the evidence. Int J Head Neck Surg 7:17–22. https://doi.org/10.5005/jp-journals-10001-1259

Article  Google Scholar 

Armani D, Liu C, Aluru N (1999) Re-configurable fluid circuits by PDMS elastomer micromachining. In: Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291). IEEE, Orlando, FL, USA, pp 222–227

Bi Z, Mueller DW (2019) Friction predication on pin-to-plate interface of PTFE material and steel. Friction 7:268–281. https://doi.org/10.1007/s40544-018-0224-8

Article  CAS  Google Scholar 

Ruchti CB, Niemeyer L (1986) Ablation controlled arcs. IEEE Trans Plasma Sci 14:423–434. https://doi.org/10.1109/TPS.1986.4316570

Article  Google Scholar 

Trochimczuk R (2017) Analysis of parallelogram mechanism used to preserve remote center of motion for surgical telemanipulator. Int J Appl Mech Eng 22:229–240. https://doi.org/10.1515/ijame-2017-0013

Article  Google Scholar 

Goode RL, Killion M, Nakamura K, Nishihara S (1994) New knowledge about the function of the human middle ear: development of an improved analog model. Am J Otol 15:145–154

CAS  PubMed  Google Scholar 

O’Connor KN, Cai H, Puria S (2017) The effects of varying tympanic-membrane material properties on human middle-ear sound transmission in a three-dimensional finite-element model. J Acoust Soc Am 142:2836–2853. https://doi.org/10.1121/1.5008741

Article  PubMed  PubMed Central  Google Scholar 

Gan RZ, Reeves BP, Wang X (2007) Modeling of sound transmission from ear canal to cochlea. Ann Biomed Eng 35:2180–2195. https://doi.org/10.1007/s10439-007-9366-y

Article  PubMed  Google Scholar 

Gan RZ, Sun Q, Feng B, Wood MW (2006) Acoustic–structural coupled finite element analysis for sound transmission in human ear—pressure distributions. Med Eng Phys 28:395–404. https://doi.org/10.1016/j.medengphy.2005.07.018

Article  PubMed  Google Scholar 

Zemplenyi J, Gilman S, Dirks D (1985) Optical method for measurement of ear canal length. J Acoust Soc Am 78:2146–2148. https://doi.org/10.1121/1.392676

Article  CAS  PubMed  Google Scholar 

Kivekäs I, Poe D (2015) Is there an optimal location for tympanostomy tube placement? Laryngoscope 125:1513–1514. https://doi.org/10.1002/lary.25127

Article  PubMed  Google Scholar 

Ebrahimian A, Tang H, Furlong C, Cheng JT, Maftoon N (2021) Material characterization of thin planar structures using full-field harmonic vibration response measured with stroboscopic holography. Int J Mech Sci 198:106390. https://doi.org/10.1016/j.ijmecsci.2021.106390

Article  PubMed  PubMed Central  Google Scholar 

Cheng JT, Maftoon N, Guignard J, Ravicz ME, Rosowski J (2019) Tympanic membrane surface motions in forward and reverse middle ear transmissions. J Acoust Soc Am 145:272–291. https://doi.org/10.1121/1.5087134

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif