The senescence journey in cancer immunoediting

Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol [Internet]. 2002;3:991–8. https://doi.org/10.1038/ni1102-991

Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–70.

Article  CAS  PubMed  Google Scholar 

BURNET M. Cancer: a biological approach. III. Viruses associated with neoplastic conditions. IV. Practical applications. Br Med J. 1957;1:841–7.

Article  PubMed  PubMed Central  Google Scholar 

McHugh D, Gil J. Senescence and aging: causes, consequences, and therapeutic avenues. J Cell Biol. 2018;217:65–77.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sagiv A, Burton DGA, Moshayev Z, Vadai E, Wensveen F, Ben-Dor S, et al. NKG2D ligands mediate immunosurveillance of senescent cells. Aging. 2016;8:328–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karin O, Agrawal A, Porat Z, Krizhanovsky V, Alon U. Senescent cell turnover slows with age providing an explanation for the Gompertz law. Nat Commun. 2019;10:5495.

Article  CAS  PubMed  PubMed Central  Google Scholar 

HAYFLICK L, MOORHEAD PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585–621.

Article  CAS  PubMed  Google Scholar 

López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: an expanding universe. Cell. 2023;186:243–78.

Article  PubMed  Google Scholar 

Hanahan D. Hallmarks of Cancer: New dimensions. Cancer Discov. 2022;12:31–46.

Article  CAS  PubMed  Google Scholar 

Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, et al. Cellular Senescence: defining a path Forward. Cell. 2019;179:813–27.

Article  CAS  PubMed  Google Scholar 

Ou H-L, Hoffmann R, González-López C, Doherty GJ, Korkola JE, Muñoz-Espín D. Cellular senescence in cancer: from mechanisms to detection. Mol Oncol. 2021;15:2634–71.

Article  CAS  PubMed  Google Scholar 

Cuollo L, Antonangeli F, Santoni A, Soriani A. The Senescence-Associated Secretory phenotype (SASP) in the Challenging Future of Cancer Therapy and Age-Related diseases. Biology (Basel). 2020;9.

Kowald A, Passos JF, Kirkwood TBL. On the evolution of cellular senescence. Aging Cell. 2020;19:e13270.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumari R, Jat P. Mechanisms of Cellular Senescence: cell cycle arrest and Senescence Associated Secretory phenotype. Front Cell Dev Biol. 2021;9:1–24.

Article  CAS  Google Scholar 

Takasugi M. Emerging roles of extracellular vesicles in cellular senescence and aging. Aging Cell [Internet]. 2018;17:e12734. https://doi.org/10.1111/acel.12734

Abbas M, Jesel L, Auger C, Amoura L, Messas N, Manin G, et al. Endothelial microparticles from Acute Coronary Syndrome patients induce premature coronary artery endothelial cell aging and thrombogenicity: role of the Ang II/AT1 Receptor/NADPH oxidase-mediated activation of MAPKs and PI3-Kinase pathways. Circulation. 2017;135:280–96.

Article  CAS  PubMed  Google Scholar 

Takasugi M, Okada R, Takahashi A, Virya Chen D, Watanabe S, Hara E. Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2. Nat Commun [Internet]. 2017;8:1–11. https://doi.org/10.1038/ncomms15728

Weilner S, Schraml E, Wieser M, Messner P, Schneider K, Wassermann K, et al. Secreted microvesicular miR-31 inhibits osteogenic differentiation of mesenchymal stem cells. Aging Cell. 2016;15:744–54.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vulpis E, Cuollo L, Borrelli C, Antonangeli F, Masuelli L, Cippitelli M et al. Doxorubicin-mediated miR-433 expression on Exosomes promotes Bystander Senescence in multiple myeloma cells in a DDR-Independent manner. Int J Mol Sci. 2023;24.

Vulpis E, Loconte L, Peri A, Molfetta R, Caracciolo G, Masuelli L, et al. Impact on NK cell functions of acute versus chronic exposure to extracellular vesicle-associated MICA: dual role in cancer immunosurveillance. J Extracell Vesicles. 2022;11:e12176.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Soriani A, Vulpis E, Cuollo L, Santoni A, Zingoni A. Cancer extracellular vesicles as novel regulators of NK cell response. Cytokine Growth Factor Rev. 2020;51:19–26.

Article  CAS  PubMed  Google Scholar 

Borrelli C, Ricci B, Vulpis E, Fionda C, Ricciardi MR, Petrucci MT, et al. Drug-Induced senescent multiple myeloma cells elicit NK Cell proliferation by direct or exosome-mediated IL15 trans-presentation. Cancer Immunol Res. 2018;6:860–9.

Article  CAS  PubMed  Google Scholar 

Guan X, LaPak KM, Hennessey RC, Yu CY, Shakya R, Zhang J, et al. Stromal senescence by prolonged CDK4/6 inhibition potentiates tumor growth. Mol Cancer Res. 2017;15:237–49.

Article  CAS  PubMed  Google Scholar 

Pardella E, Pranzini E, Nesi I, Parri M, Spatafora P, Torre E et al. Therapy-Induced Stromal Senescence Promoting Aggressiveness of Prostate and Ovarian Cancer. Cells [Internet]. 2022;11. Available from: https://www.mdpi.com/2073-4409/11/24/4026

Kanehira M, Fujiwara T, Nakajima S, Okitsu Y, Onishi Y, Fukuhara N et al. A Lysophosphatidic Acid Receptors 1 and 3 Axis Governs Cellular Senescence of Mesenchymal Stromal Cells and Promotes Growth and Vascularization of Multiple Myeloma. Stem Cells [Internet]. 2016;35:739–53. https://doi.org/10.1002/stem.2499

Sikora E, Bielak-Zmijewska A, Mosieniak G. A common signature of cellular senescence; does it exist? Ageing Res Rev. 2021;71:101458.

Article  CAS  PubMed  Google Scholar 

Vitale I, Sistigu A, Manic G, Rudqvist N-P, Trajanoski Z, Galluzzi L. Mutational and Antigenic Landscape in Tumor Progression and Cancer Immunotherapy. Trends Cell Biol. 2019;29:396–416.

Article  CAS  PubMed  Google Scholar 

Schmitt CA, Wang B, Demaria M. Senescence and cancer — role and therapeutic opportunities. Nat Rev Clin Oncol. 2022;19:619–36.

Article  PubMed  PubMed Central  Google Scholar 

Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature [Internet]. 2007;445:656–60. https://doi.org/10.1038/nature05529

Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, et al. Restoration of p53 function leads to tumour regression in vivo. Nature. 2007;445:661–5.

Article  CAS  PubMed  Google Scholar 

Chien Y, Scuoppo C, Wang X, Fang X, Balgley B, Bolden JE, et al. Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity. Genes Dev. 2011;25:2125–36.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perkins ND. Integrating cell-signalling pathways with NF-κB and IKK function. Nat Rev Mol Cell Biol [Internet]. 2007;8:49–62. https://doi.org/10.1038/nrm2083

Huang W-C, Ju T-K, Hung M-C, Chen C-C. Phosphorylation of CBP by IKKα Promotes Cell Growth by Switching the Binding Preference of CBP from p53 to NF-κB. Mol Cell [Internet]. 2007;26:75–87. Available from: https://www.sciencedirect.com/science/article/pii/S1097276507001190

Amanda K, Frank Julia I-J, Leu YZKDTNAK-SMH, Murphy ME. The Codon 72 Polymorphism of p53 Regulates Interaction with NF-κB and Transactivation of Genes Involved in Immunity and Inflammation. Mol Cell Biol [Internet]. 2011;31:1201–13. https://doi.org/10.1128/MCB.01136-10

Pavlakis E, Stiewe T. p53’s Extended Reach: The Mutant p53 Secretome. Biomolecules [Internet]. 2020;10. Available from: https://www.mdpi.com/2218-273X/10/2/307

Lujambio A, Akkari L, Simon J, Grace D, Tschaharganeh DF, Bolden JE, et al. Non-cell-autonomous tumor suppression by p53. Cell. 2013;153:449–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6.

Pribluda A, Elyada E, Wiener Z, Hamza H, Goldstein RE, Biton M et al. A Senescence-Inflammatory Switch from Cancer-Inhibitory to Cancer-Promoting Mechanism. Cancer Cell [Internet]. 2013;24:242–56. Available from: https://www.sciencedirect.com/science/article/pii/S153561081300281X

Kang T-W, Yevsa T, Woller N, Hoenicke L, Wuestefeld T, Dauch D, et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature. 2011;479:547–51.

Article  CAS  PubMed  Google Scholar 

Eggert T, Wolter K, Ji J, Ma C, Yevsa T, Klotz S, et al. Distinct functions of Senescence-Associated Immune responses in Liver Tumor Surveillance and Tumor Progression. Cancer Cell. 2016;30:533–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iannello A, Thompson TW, Ardolino M, Lowe SW, Raulet DH. p53-dependent chemokine production by senescent tumor cells supports NKG2D-dependent tumor elimination by natural killer cells. J Exp Med. 2013;210:2057–69.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tasdemir N, Banito A, Roe J-S, Alonso-Curbelo D, Camiolo M, Tschaharganeh DF, et al. BRD4 connects enhancer remodeling to Senescence Immune Surveillance. Cancer Discov. 2016;6:612–29.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu Y, Schleich K, Yue B, Ji S, Lohneis P, Kemper K, et al. Targeting the Senescence-Overriding Cooperative activity of structurally unrelated H3K9 demethylases in Melanoma. Cancer Cell. 2018;33:322–e3368.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruscetti M, Leibold J, Bott MJ, Fennell M, Kulick A, Salgado NR, et al. NK cell-mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science. 2018;362:1416–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruscetti M, Morris JP 4th, Mezzadra R, Russell J, Leibold J, Romesser PB, et al. Senescence-Induced Vascular Remodeling creates therapeutic vulnerabilities in Pancreas Cancer. Cell. 2020;181:424–e44121.

Article  CAS 

留言 (0)

沒有登入
gif