VCP Inhibition Augments NLRP3 Inflammasome Activation

Place, D.E., and T.-D. Kanneganti. 2018. Recent advances in inflammasome biology. Current Opinion in Immunology 50: 32–38. https://doi.org/10.1016/j.coi.2017.10.011.

Article  CAS  PubMed  Google Scholar 

Baroja-Mazo, A., F. Martín-Sánchez, A.I. Gomez, C.M. Martínez, J. Amores-Iniesta, V. Compan, M. Barberà-Cremades, et al. 2014. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nature Immunology 15: 738–748. https://doi.org/10.1038/ni.2919.

Article  CAS  PubMed  Google Scholar 

Fu, J., and W. Hao. 2023. Structural Mechanisms of NLRP3 Inflammasome Assembly and Activation. Annual Review of Immunology 41: 301–316. https://doi.org/10.1146/annurev-immunol-081022-021207.

Article  CAS  PubMed  Google Scholar 

Dinarello, Charles A. 2007. A signal for the caspase-1 inflammasome free of TLR. Immunity 26: 383–385. https://doi.org/10.1016/j.immuni.2007.04.005.

Article  CAS  PubMed  Google Scholar 

Mendiola, A. S., and A. E. Cardona. 2018. The IL-1β phenomena in neuroinflammatory diseases  Journal of Neural Transmission  (Vienna Austria : 1996) 125: 781–795. https://doi.org/10.1007/s00702-017-1732-9.

Article  CAS  PubMed  Google Scholar 

Hornung, V., F. Bauernfeind, A. Halle, E.O. Samstad, H. Kono, K.L. Rock, K.A. Fitzgerald, and E. Latz. 2008. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nature Immunology 9: 847–856. https://doi.org/10.1038/ni.1631.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Franchi, L., R. Muñoz-Planillo, and G. Núñez. 2012. Sensing and reacting to microbes through the inflammasomes. Nature Immunology 13: 325–332. https://doi.org/10.1038/ni.2231.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lima, Heriberto Jr, Lee S. Jacobson, Michael F. Goldberg, Kartik Chandran, Felipe Diaz-Griffero, Michael P. Lisanti, and Jürgen Brojatsch. 2013. Role of lysosome rupture in controlling Nlrp3 signaling and necrotic cell death. Cell cycle (Georgetown, Tex.) 12: 1868–1878. https://doi.org/10.4161/cc.24903.

Gross, Olaf, Amir S. Yazdi, Christina J. Thomas, Mark Masin, Leonhard X. Heinz, Greta Guarda, Manfredo Quadroni, Stefan K. Drexler, and Jurg Tschopp. 2012. Inflammasome activators induce interleukin-1α secretion via distinct pathways with differential requirement for the protease function of caspase-1. Immunity 36: 388–400. https://doi.org/10.1016/j.immuni.2012.01.018.

Article  CAS  PubMed  Google Scholar 

Amores-Iniesta, J., M. Barberà-Cremades, C.M. Martínez, J.A. Pons, B. Revilla-Nuin, L. Martínez-Alarcón, F. Di Virgilio, P. Parrilla, A. Baroja-Mazo, and P. Pelegrín. 2017. Extracellular ATP Activates the NLRP3 Inflammasome and Is an Early Danger Signal of Skin Allograft Rejection. Cell Reports 21: 3414–3426. https://doi.org/10.1016/j.celrep.2017.11.079.

Article  CAS  PubMed  Google Scholar 

Gurcel, L., L. Abrami, S. Girardin, J. Tschopp, and F. Gisou van der Goot. 2006. Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 126: 1135–1145. https://doi.org/10.1016/j.cell.2006.07.033.

Article  CAS  PubMed  Google Scholar 

Perregaux, D., and C.A. Gabel. 1994. Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. The Journal of Biological Chemistry 269: 15195–15203.

Article  CAS  PubMed  Google Scholar 

Tang, T., X. Lang, X. Congfei, X. Wang, T. Gong, Y. Yang, J. Cui, et al. 2017. CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation. Nature Communications 8: 202. https://doi.org/10.1038/s41467-017-00227-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, Q., D. Zhang, D. Hu, X. Zhou, and Y. Zhou. 2018. The role of mitochondria in NLRP3 inflammasome activation. Molecular Immunology 103: 115–124. https://doi.org/10.1016/j.molimm.2018.09.010.

Article  CAS  PubMed  Google Scholar 

Sanman, LE., Y. Qian, N.A. Eisele, T.M. Ng, W.A. van der Linden, D.M. Monack, E. Weerapana, and M. Bogyo. 2016. Disruption of glycolytic flux is a signal for inflammasome signaling and pyroptotic cell death. eLife 5: e13663. https://doi.org/10.7554/eLife.13663.

Muñoz-Planillo, R., P. Kuffa, G. Martínez-Colón, B.L. Smith, T.M. Rajendiran, and G. Núñez. 2013. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38: 1142–1153. https://doi.org/10.1016/j.immuni.2013.05.016.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hou, Y., H. He, M. Ma, and R. Zhou. 2023. Apilimod activates the NLRP3 inflammasome through lysosome-mediated mitochondrial damage. Frontiers in Immunology 14: 1128700. https://doi.org/10.3389/fimmu.2023.1128700.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou, Y., L. Ming, D. Ren-Hong, C. Qiao, C.-Y. Jiang, K.-Z. Zhang, J.-H. Ding, and H. Gang. 2016. MicroRNA-7 targets Nod-like receptor protein 3 inflammasome to modulate neuroinflammation in the pathogenesis of Parkinson’s disease. Molecular Neurodegeneration 11: 28. https://doi.org/10.1186/s13024-016-0094-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gordon, R., E.A. Albornoz, D.C. Christie, M.R. Langley, V. Kumar, S. Mantovani, A.A.B. Robertson, et al. 2018. Inflammasome inhibition prevents α-synuclein pathology and dopaminergic neurodegeneration in mice. Science Translational Medicine. https://doi.org/10.1126/scitranslmed.aah4066.

Article  PubMed  PubMed Central  Google Scholar 

Tresse, E., F.A. Salomons, J. Vesa, L.C. Bott, V. Kimonis, T.-P. Yao, N.P. Dantuma, and J.P. Taylor. 2010. VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy 6: 217–227. https://doi.org/10.4161/auto.6.2.11014.

Article  CAS  PubMed  Google Scholar 

Papadopoulos, C., P. Kirchner, M. Bug, D. Grum, L. Koerver, N. Schulze, R. Poehler, et al. 2017. VCP/p97 cooperates with YOD1, UBXD1 and PLAA to drive clearance of ruptured lysosomes by autophagy. The EMBO Journal 36: 135–150. https://doi.org/10.15252/embj.201695148.

Seguin, S.J., F.F. Morelli, J. Vinet, D. Amore, S. De Biasi, A. Poletti, D.C. Rubinsztein, and S. Carra. 2014. Inhibition of autophagy, lysosome and VCP function impairs stress granule assembly. Cell Death and Differentiation 21: 1838–1851. https://doi.org/10.1038/cdd.2014.103.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Magnaghi, P., R. D’Alessio, B. Valsasina, N. Avanzi, S. Rizzi, D. Asa, F. Gasparri, et al. 2013. Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death. Nature Chemical Biology 9: 548–556. https://doi.org/10.1038/nchembio.1313.

Article  CAS  PubMed  Google Scholar 

Chou, Tsui-Fen., Steve J. Brown, Dmitriy Minond, B.E. Nordin, K. Li, A.C. Jones, P. Chase, et al. 2011. Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways. Proceedings of the National Academy of Sciences of the United States of America 108: 4834–4839. https://doi.org/10.1073/pnas.1015312108.

Article  PubMed  PubMed Central  Google Scholar 

Fang, C.-J., L. Gui, X. Zhang, D.R. Moen, K. Li, K.J. Frankowski, H.J. Lin, F.J. Schoenen, and T.-F. Chou. 2015. Evaluating p97 inhibitor analogues for their domain selectivity and potency against the p97–p47 complex. ChemMedChem 10: 52–56. https://doi.org/10.1002/cmdc.201402420.

Article  CAS  PubMed  Google Scholar 

Anderson, D.J., R. Le Moigne, S. Djakovic, B. Kumar, J. Rice, S. Wong, J. Wang, et al. 2015. Targeting the AAA ATPase p97 as an Approach to Treat Cancer through Disruption of Protein Homeostasis. Cancer Cell 28: 653–665. https://doi.org/10.1016/j.ccell.2015.10.002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al-Obeidi, E., S. Al-Tahan, A. Surampalli, N. Goyal, A.K. Wang, A. Hermann, M. Omizo, C. Smith, T. Mozaffar, and V. Kimonis. 2018. Genotype-phenotype study in patients with valosin-containing protein mutations associated with multisystem proteinopathy. Clinical Genetics 93: 119–125. https://doi.org/10.1111/cge.13095.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arhzaouy, K., C. Papadopoulos, N. Schulze, S.K. Pittman, H. Meyer, and C.C. Weihl. 2019. VCP maintains lysosomal homeostasis and TFEB activity in differentiated skeletal muscle. Autophagy 15: 1082–1099. https://doi.org/10.1080/15548627.2019.1569933.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Asai, T., Y. Tomita, S.-I. Nakatsuka, Y. Hoshida, A. Myoui, H. Yoshikawa, and K. Aozasa. 2002. VCP (p97) regulates NFkappaB signaling pathway, which is important for metastasis of osteosarcoma cell line. Japanese Journal of Cancer Research 93: 296–304. https://doi.org/10.1111/j.1349-7006.2002.tb02172.x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dec, E., P. Rana, V. Katheria, R. Dec, M. Khare, A. Nalbandian, S.-Y. Leu, et al. 2014. Cytokine profiling in patients with VCP-associated disease. Clinical and Translational Science 7: 29–32. https://doi.org/10.1111/cts.12117.

Article  CAS  PubMed  Google Scholar 

Nalbandian, A., A.A. Khan, R. Srivastava, K.J. Llewellyn, B. Tan, N. Shukr, Y. Fazli, V.E. Kimonis, and L. BenMohamed. 2017. Activation of the NLRP3 Inflammasome Is Associated with Valosin-Containing Protein Myopathy. Inflammation 40: 21–41. https://doi.org/10.1007/s10753-016-0449-5.

Article  CAS  PubMed  Google Scholar 

Dhavale, D.D., C. Tsai, D.P. Bagchi, L.A. Engel, J. Sarezky, and P.T. Kotzbauer. 2017. A sensitive assay reveals structural requirements for α-synuclein fibril growth. The Journal of Biological Chemistry 292: 9034–9050. https://doi.org/10.1074/jbc.M116.767053.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif