Identification of a novel LFNG variant in a Chinese fetus with spondylocostal dysostosis and a systematic review

Solomon L, Jimenez RB, Reiner L. Spondylothoracic dysostosis: report of two cases and review of the literature. Arch Pathol Lab Med. 1978;102:201–5.

CAS  PubMed  Google Scholar 

Gucev ZS, Tasic V, Pop-Jordanova N, Sparrow DB, Dunwoodie SL, Ellard S, et al. Autosomal dominant spondylocostal dysostosis in three generations of a Macedonian family: negative mutation analysis of DLL3, MESP2, HES7, and LFNG. Am J Med Genet A. 2010;152A:1378–82. https://doi.org/10.1002/ajmg.a.33471

Article  PubMed  Google Scholar 

Whittock NV, Sparrow DB, Wouters MA, Sillence D, Ellard S, Dunwoodie SL, et al. Mutated MESP2 causes spondylocostal dysostosis in humans. Am J Hum Genet. 2004. https://doi.org/10.1086/421053

Article  PubMed  PubMed Central  Google Scholar 

Sparrow DB, Chapman G, Wouters MA, Whittock NV, Ellard S, Fatkin D, et al. Mutation of the LUNATIC FRINGE gene in humans causes spondylocostal dysostosis with a severe vertebral phenotype. Am J Hum Genet. 2006;78:28–37. https://doi.org/10.1086/498879

Article  CAS  PubMed  Google Scholar 

Sparrow DB, Guillen-Navarro E, Fatkin D, Dunwoodie SL. Mutation of Hairy-and-Enhancer-of-Split-7 in humans causes spondylocostal dysostosis. Hum Mol Genet. 2008;17:3761–6. https://doi.org/10.1093/hmg/ddn272

Article  CAS  PubMed  Google Scholar 

Umair M, Younus M, Shafiq S, Nayab A, Alfadhel M. Clinical genetics of spondylocostal dysostosis: a mini review. Front Genet. 2022;13:996364. https://doi.org/10.3389/fgene.2022.996364

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu N, Ming X, Xiao J, Wu Z, Chen X, Shinawi M, et al. TBX6 null variants and a common hypomorphic allele in congenital scoliosis. N Engl J Med. 2015;372:341–50. https://doi.org/10.1056/NEJMoa1406829

Article  CAS  PubMed  PubMed Central  Google Scholar 

McInerney-Leo AM, Sparrow DB, Harris JE, Gardiner BB, Marshall MS, O’Reilly VC, et al. Compound heterozygous mutations in RIPPLY2 associated with vertebral segmentation defects. Hum Mol Genet. 2015;24:1234–42. https://doi.org/10.1093/hmg/ddu534

Article  CAS  PubMed  Google Scholar 

Bulman MP, Kusumi K, Frayling TM, McKeown C, Garrett C, Lander ES, et al. Mutations in the human delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nat Genet. 2000;24:438–41. https://doi.org/10.1038/74307

Article  CAS  PubMed  Google Scholar 

Turnpenny PD, Whittock N, Duncan J, Dunwoodie S, Kusumi K, Ellard S. Novel mutations in DLL3, a somitogenesis gene encoding a ligand for the Notch signalling pathway, cause a consistent pattern of abnormal vertebral segmentation in spondylocostal dysostosis. J Med Genet. 2003;40:333–9. https://doi.org/10.1136/jmg.40.5.333

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang S, Qiao Y, Wang Z, Zhuang J, Sun Y, Shang X, et al. Identification of novel compound heterozygous variants in SLC19A2 and the genotype-phenotype associations in thiamine-responsive megaloblastic anemia. Clin Chim Acta. 2021;516:157–68. https://doi.org/10.1016/j.cca.2021.01.025

Article  CAS  PubMed  Google Scholar 

Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9. https://doi.org/10.1038/nmeth0410-248

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schwarz JM, Rodelsperger C, Schuelke M, Seelow D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods. 2010;7:575–6. https://doi.org/10.1038/nmeth0810-575

Article  CAS  PubMed  Google Scholar 

Shangguan H, Su C, Ouyang Q, Cao B, Wang J, Gong C, et al. Kabuki syndrome: novel pathogenic variants, new phenotypes and review of literature. Orphanet J Rare Dis. 2019;14:255. https://doi.org/10.1186/s13023-019-1219-x

Article  PubMed  PubMed Central  Google Scholar 

Rodrigues CH, Pires DE, Ascher DB. DynaMut: predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Res. 2018;46:W350–5. https://doi.org/10.1093/nar/gky300

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: making protein folding accessible to all. Nat Methods. 2022;19:679–82. https://doi.org/10.1038/s41592-022-01488-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med Off J Am Coll Med Genet. 2015;17:405–24. https://doi.org/10.1038/gim.2015.30

Article  Google Scholar 

Rampal R, Li AS, Moloney DJ, Georgiou SA, Luther KB, Nita-Lazar A, et al. Lunatic fringe, manic fringe, and radical fringe recognize similar specificity determinants in O-fucosylated epidermal growth factor-like repeats. J Biol Chem. 2005;280:42454–63. https://doi.org/10.1074/jbc.M509552200

Article  CAS  PubMed  Google Scholar 

Otomo N, Mizumoto S, Lu HF, Takeda K, Campos-Xavier B, Mittaz-Crettol L, et al. Identification of novel LFNG mutations in spondylocostal dysostosis. J Hum Genet. 2019;64:261–4. https://doi.org/10.1038/s10038-018-0548-2

Article  CAS  PubMed  Google Scholar 

Okubo Y, Sugawara T, Abe-Koduka N, Kanno J, Kimura A, Saga Y. Lfng regulates the synchronized oscillation of the mouse segmentation clock via trans-repression of Notch signalling. Nat Commun. 2012;3:1141. https://doi.org/10.1038/ncomms2133

Article  CAS  PubMed  Google Scholar 

Bochter MS, Servello D, Kakuda S, D’Amico R, Ebetino MF, Haltiwanger RS, et al. Lfng and Dll3 cooperate to modulate protein interactions in cis and coordinate oscillatory Notch pathway activation in the segmentation clock. Dev Biol. 2022;487:42–56. https://doi.org/10.1016/j.ydbio.2022.04.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matsumoto K, Kumar V, Varshney S, Nairn AV, Ito A, Pennarubia F, et al. Fringe GlcNAc-transferases differentially extend O-fucose on endogenous NOTCH1 in mouse activated T cells. J Biol Chem. 2022;298:102064. https://doi.org/10.1016/j.jbc.2022.102064

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu K, Nieuwenhuis E, Cohen BL, Wang W, Egan SE. Lunatic fringe-mediated Notch signaling is required for lung alveogenesis. Am J Physiol Lung Cell Mol Physiol. 2010;298:L45–56. https://doi.org/10.1152/ajplung.90550.2008

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif