Skeletal interoception in osteoarthritis

Quadt, L., Critchley, H. D. & Garfinkel, S. N. The neurobiology of interoception in health and disease. Ann. N. Y. Acad. Sci. 1428, 112–128 (2018).

Article  PubMed  Google Scholar 

Shu, S. et al. Machine-learning assisted electronic skins capable of proprioception and exteroception in soft robotics. Adv. Mater. 35, e2211385 (2023).

Article  PubMed  Google Scholar 

Park, H. D. & Blanke, O. Coupling inner and outer body for self-consciousness. Trends Cogn. Sci. 23, 377–388 (2019).

Article  PubMed  Google Scholar 

Riddle, R. C. & Clemens, T. L. Bone cell bioenergetics and skeletal energy homeostasis. Physiol. Rev. 97, 667–698 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lv, X., Gao, F. & Cao, X. Skeletal interoception in bone homeostasis and pain. Cell Metab. 34, 1914–1931 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yao, Q. et al. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct. Target Ther. 8, 56 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Hunter, D. J. & Bierma-Zeinstra, S. Osteoarthritis. Lancet 393, 1745–1759 (2019).

Article  CAS  PubMed  Google Scholar 

Rizzo, M. G. et al. Therapeutic perspectives for inflammation and senescence in osteoarthritis using mesenchymal stem cells, mesenchymal stem cell-derived extracellular vesicles and senolytic agents. Cells 12, 1421 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Defois, A. et al. Osteoarthritic chondrocytes undergo a glycolysis-related metabolic switch upon exposure to IL-1b or TNF. Cell Commun. Signal 21, 137 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, H. et al. Prostaglandin E2 mediates sensory nerve regulation of bone homeostasis. Nat. Commun. 10, 181 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Collins, J. A. et al. Cartilage-specific Sirt6 deficiency represses IGF-1 and enhances osteoarthritis severity in mice. Ann. Rheum. Dis. 82, 1464–1473 (2023).

Article  CAS  PubMed  Google Scholar 

Zappia, J. et al. Osteomodulin downregulation is associated with osteoarthritis development. Bone Res. 11, 49 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun, Q. et al. Inhibition of PGE2 in subchondral bone attenuates osteoarthritis. Cells 11, 2760 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang, W. et al. PGE2 activates EP4 in subchondral bone osteoclasts to regulate osteoarthritis. Bone Res. 10, 27 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu, J. et al. Aberrant subchondral osteoblastic metabolism modifies Na(V)1.8 for osteoarthritis. Elife 9, e57656 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tu, M. et al. Inhibition of cyclooxygenase-2 activity in subchondral bone modifies a subtype of osteoarthritis. Bone Res. 7, 29 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Levine, D. N. Sherrington’s “The integrative action of the nervous system”: a centennial appraisal. J. Neurol. Sci. 253, 1–6 (2007).

Article  PubMed  Google Scholar 

Khalsa, S. S. et al. Interoception and mental health: a roadmap. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3, 501–513 (2018).

PubMed  Google Scholar 

Chen, W. G. et al. The emerging science of interoception: sensing, integrating, interpreting, and regulating signals within the self. Trends Neurosci. 44, 3–16 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berntson, G. G. & Khalsa, S. S. Neural circuits of interoception. Trends Neurosci. 44, 17–28 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brazill, J. M., Beeve, A. T., Craft, C. S., Ivanusic, J. J. & Scheller, E. L. Nerves in bone: evolving concepts in pain and anabolism. J. Bone Min. Res. 34, 1393–1406 (2019).

Article  Google Scholar 

Mantyh, P. W. The neurobiology of skeletal pain. Eur. J. Neurosci. 39, 508–519 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Holt, M. K. et al. Synaptic inputs to the mouse dorsal vagal complex and its resident preproglucagon neurons. J. Neurosci. 39, 9767–9781 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lowenstein, E. D. et al. Prox2 and Runx3 vagal sensory neurons regulate esophageal motility. Neuron 111, 2184-2200 (2023).

Chang, R. B., Strochlic, D. E., Williams, E. K., Umans, B. D. & Liberles, S. D. Vagal sensory neuron subtypes that differentially control breathing. Cell 161, 622–633 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Waise, T. M. Z., Dranse, H. J. & Lam, T. K. T. The metabolic role of vagal afferent innervation. Nat. Rev. Gastroenterol. Hepatol. 15, 625–636 (2018).

Article  PubMed  Google Scholar 

Ly, T. et al. Sequential appetite suppression by oral and visceral feedback to the brainstem. Nature 624, 130-137 (2023).

Critchley, H. D. & Harrison, N. A. Visceral influences on brain and behavior. Neuron 77, 624–638 (2013).

Article  CAS  PubMed  Google Scholar 

Kowalski, J. L. et al. Resting state functional connectivity differentiation of neuropathic and nociceptive pain in individuals with chronic spinal cord injury. Neuroimage Clin. 38, 103414 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Saper, C. B. The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annu. Rev. Neurosci. 25, 433–469 (2002).

Article  CAS  PubMed  Google Scholar 

Phillips, J. W. et al. A repeated molecular architecture across thalamic pathways. Nat. Neurosci. 22, 1925–1935 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saper, C. B. & Lowell, B. B. The hypothalamus. Curr. Biol. 24, R1111–R1116 (2014).

Article  CAS  PubMed  Google Scholar 

Chiang, M. C. et al. Parabrachial complex: a hub for pain and aversion. J. Neurosci. 39, 8225–8230 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lathe, R., Singadia, S., Jordan, C. & Riedel, G. The interoceptive hippocampus: mouse brain endocrine receptor expression highlights a dentate gyrus (DG)-cornu ammonis (CA) challenge-sufficiency axis. PLoS One 15, e0227575 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alexander, L. et al. Fractionating blunted reward processing characteristic of anhedonia by over-activating primate subgenual anterior cingulate cortex. Neuron 101, 307–320.e306 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Evrard, H. C. The organization of the primate insular cortex. Front. Neuroanat. 13, 43 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McDougall, S. J., Guo, H. & Andresen, M. C. Dedicated C-fibre viscerosensory pathways to central nucleus of the amygdala. J. Physiol. 595, 901–917 (2017).

Article  CAS  PubMed  Google Scholar 

Eickhoff, S. B. et al. Segregation of visceral and somatosensory afferents: an fMRI and cytoarchitectonic mapping study. Neuroimage 31, 1004–1014 (2006).

Article  PubMed  Google Scholar 

Joyce, M. K. P. & Barbas, H. Cortical connections position primate area 25 as a keystone for interoception, emotion, and memory. J. Neurosci. 38, 1677–1698 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif