Vaccination with a combination of STING agonist-loaded lipid nanoparticles and CpG-ODNs protects against lung metastasis via the induction of CD11bhighCD27low memory-like NK cells

Hu W, Wang G, Huang D, Sui M, Xu Y. Cancer immunotherapy based on natural killer cells: current progress and new opportunities. Front Immunol. 2019;10:1205.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang M, Yin B, Wang HY, Wang RF. Current advances in T-cell-based cancer immunotherapy. Immunotherapy. 2014;6(12):1265–78.

Article  CAS  PubMed  Google Scholar 

Chandran SS, Klebanoff CA. T cell receptor-based cancer immunotherapy: emerging efficacy and pathways of resistance. Immunol Rev. 2019;290(1):127–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Y-C, Wang X, Yu J, Ma F, Li Z, Zhou Y, et al. Targeting monoamine oxidase A-regulated tumor-associated macrophage polarization for cancer immunotherapy. Nat Commun. 2021;12(1):1–17.

Google Scholar 

Spranger S. Mechanisms of tumor escape in the context of the T-cell-inflamed and the non-t-cell-inflamed tumor microenvironment. Int Immunol. 2016;28(8):383–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bogen B. Peripheral T cell tolerance as a tumor escape mechanism: deletion of CD4 + T cells specific for a monoclonal immunoglobulin idiotype secreted by a plasmacytoma. Eur J Immunol. 1996;26(11):2671–9.

Article  CAS  PubMed  Google Scholar 

Khalifa AM, Nakamura T, Sato Y, Sato T, Hyodo M, Hayakawa Y, et al. Interval- and cycle-dependent combined effect of STING agonist loaded lipid nanoparticles and a PD-1 antibody. Int J Pharm. 2022;624:122034.

Article  CAS  PubMed  Google Scholar 

Nakamura T, Sato T, Endo R, Sasaki S, Takahashi N, Sato Y et al. STING agonist loaded lipid nanoparticles overcome anti-PD-1 resistance in melanoma lung metastasis via NK cell activation. J Immunother Cancer. 2021;9(7).

Wang DY, Eroglu Z, Ozgun A, Leger PD, Zhao S, Ye F, et al. Clinical features of acquired resistance to anti–PD-1 therapy in advanced melanoma. Cancer Immunol Res. 2017;5(5):357–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim N, Lee D-H, Choi WS, Yi E, Kim H, Kim JM, et al. Harnessing NK cells for cancer immunotherapy: immune checkpoint receptors and chimeric antigen receptors. BMB Rep. 2021;54(1):44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Terrén I, Orrantia A, Astarloa-Pando G, Amarilla-Irusta A, Zenarruzabeitia O, Borrego F. Cytokine-Induced Memory-Like NK cells: from the basics to clinical applications. Front Immunol. 2022;13:884648.

Article  PubMed  PubMed Central  Google Scholar 

Sun JC, Beilke JN, Lanier LL. Adaptive immune features of natural killer cells. Nature. 2009;457(7229):557–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brillantes M, Beaulieu AM. Memory and Memory-Like NK cell responses to Microbial pathogens. Front Cell Infect Microbiol. 2020;10:102.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bergantini L, d’Alessandro M, Cameli P, Cavallaro D, Gangi S, Cekorja B et al. NK and T Cell Immunological Signatures in hospitalized patients with COVID-19. Cells. 2021;10(11).

Brueggeman JM, Zhao J, Schank M, Yao ZQ, Moorman JP. Trained immunity: an overview and the impact on COVID-19. Front Immunol. 2022;13:837524.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kleinnijenhuis J, Quintin J, Preijers F, Benn CS, Joosten LA, Jacobs C, et al. Long-lasting effects of BCG vaccination on both heterologous Th1/Th17 responses and innate trained immunity. J Innate Immun. 2014;6(2):152–8.

Article  CAS  PubMed  Google Scholar 

Moorlag SJCFM, Arts RJW, van Crevel R, Netea MG. Non-specific effects of BCG vaccine on viral infections. Clin Microbiol Infect. 2019;25(12):1473–8.

Article  CAS  PubMed  Google Scholar 

Cooper MA, Elliott JM, Keyel PA, Yang L, Carrero JA, Yokoyama WM. Cytokine-induced memory-like natural killer cells. Proc Natl Acad Sci U S A. 2009;106(6):1915–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song Y, Hu B, Liu Y, Jin Z, Zhang Y, Lin D, et al. IL-12/IL‐18‐preactivated donor NK cells enhance GVL effects and mitigate GvHD after allogeneic hematopoietic stem cell transplantation. Eur J Immunol. 2018;48(4):670–82.

Article  CAS  PubMed  Google Scholar 

Romee R, Rosario M, Berrien-Elliott MM, Wagner JA, Jewell BA, Schappe T, et al. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci Transl Med. 2016;8(357):357ra123.

Article  PubMed  PubMed Central  Google Scholar 

Ghofrani J, Lucar O, Dugan H, Reeves RK, Jost S. Semaphorin 7A modulates cytokine-induced memory‐like responses by human natural killer cells. Eur J Immunol. 2019;49(8):1153–66.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Romee R, Schneider SE, Leong JW, Chase JM, Keppel CR, Sullivan RP, et al. Cytokine activation induces human memory-like NK cells. Blood. 2012;120(24):4751–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marin ND, Krasnick BA, Becker-Hapak M, Conant L, Goedegebuure SP, Berrien-Elliott MM, et al. Memory-like differentiation enhances NK cell responses to melanoma. Clin Cancer Res. 2021;27(17):4859–69.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gang M, Wong P, Berrien-Elliott MM, Fehniger TA. Memory-like natural killer cells for cancer immunotherapy. Semin Hematol. 2020;57(4):185–93.

Article  PubMed  PubMed Central  Google Scholar 

Ni J, Miller M, Stojanovic A, Garbi N, Cerwenka A. Sustained effector function of IL-12/15/18-preactivated NK cells against established tumors. J Exp Med. 2012;209(13):2351–65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miyabe H, Hyodo M, Nakamura T, Sato Y, Hayakawa Y, Harashima H. A new adjuvant delivery system ‘cyclic di-GMP/YSK05 liposome’ for cancer immunotherapy. J Controlled Release: Official J Controlled Release Soc. 2014;184:20–7.

Article  CAS  Google Scholar 

Nakamura T, Miyabe H, Hyodo M, Sato Y, Hayakawa Y, Harashima H. Liposomes loaded with a STING pathway ligand, cyclic di-GMP, enhance cancer immunotherapy against metastatic melanoma. J Controlled Release: Official J Controlled Release Soc. 2015;216:149–57.

Article  CAS  Google Scholar 

Nakamura T, Kawakami K, Nomura M, Sato Y, Hyodo M, Hatakeyama H, et al. Combined nano cancer immunotherapy based on immune status in a tumor microenvironment. J Controlled Release: Official J Controlled Release Soc. 2022;345:200–13.

Article  CAS  Google Scholar 

Chin EN, Sulpizio A, Lairson LL. Targeting STING to promote antitumor immunity. Trends Cell Biol. 2022.

Temizoz B, Kuroda E, Ohata K, Jounai N, Ozasa K, Kobiyama K, et al. TLR9 and STING agonists synergistically induce innate and adaptive type-II IFN. Eur J Immunol. 2015;45(4):1159–69.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gupta GK, Agrawal DK. CpG Oligodeoxynucleotides as TLR9 agonists. BioDrugs. 2010;24(4):225–35.

Article  CAS  PubMed  Google Scholar 

Warashina S, Nakamura T, Sato Y, Fujiwara Y, Hyodo M, Hatakeyama H, et al. A lipid nanoparticle for the efficient delivery of siRNA to dendritic cells. J Controlled Release. 2016;225:183–91.

Article  CAS  Google Scholar 

Endo R, Nakamura T, Kawakami K, Sato Y, Harashima H. The silencing of indoleamine 2,3-dioxygenase 1 (IDO1) in dendritic cells by siRNA-loaded lipid nanoparticles enhances cell-based cancer immunotherapy. Sci Rep. 2019;9(1):11335.

Article  PubMed  PubMed Central  Google Scholar 

Nakamura T, Kuroi M, Fujiwara Y, Warashina S, Sato Y, Harashima H. Small-sized, stable lipid nanoparticle for the efficient delivery of siRNA to human immune cell lines. Sci Rep. 2016;6:37849.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakamura T, Yamada K, Fujiwara Y, Sato Y, Harashima H. Reducing the cytotoxicity of Lipid Nanoparticles Associated with a fusogenic Cationic lipid in a natural killer cell line by introducing a polycation-based siRNA core. Mol Pharm. 2018;15(6):2142–50.

Article  CAS  PubMed  Google Scholar 

Nakamura T, Yamada K, Sato Y, Harashima H. Lipid nanoparticles fuse with cell membranes of immune cells at low temperatures leading to the loss of transfection activity. Int J Pharm. 2020;587:119652.

Article  CAS  PubMed  Google Scholar 

Nakamura T, Kawakami K, Nomura M, Sato Y, Hyodo M, Hatakeyama H, et al. Combined nano cancer immunotherapy based on immune status in a tumor microenvironment. J Controlled Release. 2022;345:200–13.

Article  CAS  Google Scholar 

Singh AK, Praharaj M, Lombardo KA, Yoshida T, Matoso A, Baras AS et al. Recombinant BCG overexpressing a STING agonist elicits trained immunity and improved antitumor efficacy in non-muscle invasive bladder cancer. bioRxiv. 2020:2020.04.25.061531.

留言 (0)

沒有登入
gif