Standardized production of hPSC-derived cardiomyocyte aggregates in stirred spinner flasks

Laflamme, M. A. & Murry, C. E. Heart regeneration. Nature 473, 326–335 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kobold, S. et al. A manually curated database on clinical studies involving cell products derived from human pluripotent stem cells. Stem Cell Rep. 15, 546–555 (2020).

Article  CAS  Google Scholar 

Ilic, D. & Ogilvie, C. Pluripotent stem cells in clinical setting—new developments and overview of current status. Stem Cells 40, 791–801 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Cyranoski, D. ‘Reprogrammed’ stem cells approved to mend human hearts for the first time. Nature 557, 619–620 (2018).

Article  CAS  PubMed  Google Scholar 

Mallapaty, S. Revealed: two men in China were first to receive pioneering stem-cell treatment for heart disease. Nature 581, 249–250 (2020).

Article  CAS  PubMed  Google Scholar 

Silver, S. E., Barrs, R. W. & Mei, Y. Transplantation of human pluripotent stem cell-derived cardiomyocytes for cardiac regenerative therapy. Front. Cardiovasc. Med. 8, 707890 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, Y.-W. et al. Human embryonic stem cell–derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nat. Biotechnol. 36, 597–605 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

van den Akker, F. et al. Intramyocardial stem cell injection: go(ne) with the flow. Eur. Heart J. 38, 184–186 (2016).

Google Scholar 

Hogrebe, N. J., Maxwell, K. G., Augsornworawat, P. & Millman, J. R. Generation of insulin-producing pancreatic β cells from multiple human stem cell lines. Nat. Protoc. 16, 4109–4143 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Preininger, M. K., Singh, M. & Xu, C. Cryopreservation of human pluripotent stem cell-derived cardiomyocytes: strategies, challenges, and future directions. Adv. Exp. Med. Biol. 951, 123–135 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Halloin, C. et al. Continuous WNT control enables advanced hPSC cardiac processing and prognostic surface marker identification in chemically defined suspension culture. Stem Cell Rep. 13, 366–379 (2019).

Article  CAS  Google Scholar 

Burridge, P. W. et al. Chemically defined generation of human cardiomyocytes. Nat. Methods 11, 855–860 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lian, X. et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc. Natl Acad. Sci. USA 109, E1848–E1857 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lian, X. et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat. Protoc. 8, 162–175 (2013).

Article  CAS  PubMed  Google Scholar 

Fonoudi, H. et al. Large-scale production of cardiomyocytes from human pluripotent stem cells using a highly reproducible small molecule-based differentiation protocol. J. Vis. Exp. 2016, 54276 (2016).

Google Scholar 

Kahn-Krell, A. et al. Bioreactor suspension culture: differentiation and production of cardiomyocyte spheroids from human induced pluripotent stem cells. Front. Bioeng. Biotechnol. 9, 674260 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Kempf, H., Kropp, C., Olmer, R., Martin, U. & Zweigerdt, R. Cardiac differentiation of human pluripotent stem cells in scalable suspension culture. Nat. Protoc. 10, 1345–1361 (2015).

Article  CAS  PubMed  Google Scholar 

Chen, A., Ting, S., Seow, J., Reuveny, S. & Oh, S. Considerations in designing systems for large scale production of human cardiomyocytes from pluripotent stem cells. Stem Cell Res. Ther. 5, 12 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Kempf, H. et al. Controlling expansion and cardiomyogenic differentiation of human pluripotent stem cells in scalable suspension culture. Stem Cell Rep. 3, 1132–1146 (2014).

Article  CAS  Google Scholar 

Manstein, F. et al. High density bioprocessing of human pluripotent stem cells by metabolic control and in silico modeling. Stem Cells Transl. Med 10, 1063–1080 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Langenberg, K. et al. Controlled stirred tank bioreactors for large-scale manufacture of human iPSC models for cell therapy. Cytotherapy 22, S43 (2020).

Article  Google Scholar 

Fischer, B. et al. A complete workflow for the differentiation and the dissociation of hiPSC-derived cardiospheres. Stem Cell Res 32, 65–72 (2018).

Article  CAS  PubMed  Google Scholar 

Correia, C. et al. Combining hypoxia and bioreactor hydrodynamics boosts induced pluripotent stem cell differentiation towards cardiomyocytes. Stem Cell Rev. Rep. 10, 786–801 (2014).

Article  CAS  PubMed  Google Scholar 

Hamad, S. et al. Generation of human induced pluripotent stem cell-derived cardiomyocytes in 2D monolayer and scalable 3D suspension bioreactor cultures with reduced batch-to-batch variations. Theranostics 9, 7222–7238 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sahabian, A. et al. Chemically-defined, xeno-free, scalable production of hPSC-derived definitive endoderm aggregates with multi-lineage differentiation potential. Cells 8, 1571 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ackermann, M. et al. Continuous human iPSC-macrophage mass production by suspension culture in stirred tank bioreactors. Nat. Protoc. 17, 513–539 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, V. C. et al. Development of a scalable suspension culture for cardiac differentiation from human pluripotent stem cells. Stem Cell Res. 15, 365–375 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shafa, M., Panchalingam, K. M., Walsh, T., Richardson, T. & Baghbaderani, B. A. Computational fluid dynamics modeling, a novel, and effective approach for developing scalable cell therapy manufacturing processes. Biotechnol. Bioeng. 116, 3228–3241 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kropp, C. et al. Impact of feeding strategies on the scalable expansion of human pluripotent stem cells in single-use stirred tank bioreactors. Stem Cells Transl. Med 5, 1289–1301 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Kempf, H. et al. Bulk cell density and Wnt/TGFbeta signalling regulate mesendodermal patterning of human pluripotent stem cells. Nat. Commun. 7, 13602 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zweigerdt, R., Olmer, R., Singh, H., Haverich, A. & Martin, U. Scalable expansion of human pluripotent stem cells in suspension culture. Nat. Protoc. 6, 689–700 (2011).

Article  CAS  PubMed  Google Scholar 

Olmer, R. et al. Suspension culture of human pluripotent stem cells in controlled, stirred bioreactors. Tissue Eng. Part C. Methods 18, 772–784 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kiesslich, S. & Kamen, A. A. Vero cell upstream bioprocess development for the production of viral vectors and vaccines. Biotechnol. Adv. 44, 107608 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ashok, P., Parikh, A., Du, C. & Tzanakakis, E. S. Xenogeneic-free system for biomanufacturing of cardiomyocyte progeny from human pluripotent stem cells. Front. Bioeng. Biotechnol. 8, 571425 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Manstein, F. et al. Protocol process control and in silico modeling strategies for enabling high density culture of human pluripotent stem cells in stirred tank bioreactors. STAR Protoc. 2, 100988 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gaspari, E. et al. Paracrine mechanisms in early differentiation of human pluripotent stem cells: insights from a mathematical model. Stem Cell Res. 32, 1–7 (2018).

Article  CAS  PubMed  Google Scholar 

Williams, B. et al. Prediction of human induced pluripotent stem cell cardiac differentiation outcome by multifactorial process modeling. Front. Bioeng. Biotechnol. 8, 851 (2020).

留言 (0)

沒有登入
gif