Exploring Heparan Sulfate Proteoglycans as Mediators of Human Mesenchymal Stem Cell Neurogenesis

Abdelnour C, Agosta F, Bozzali M, Fougere B, Iwata A, Nilforooshan R, Takada LT, Vinuela F, Traber M (2022) Perspectives and challenges in patient stratification in Alzheimer’s disease. Alzheimers Res Ther 14(1):112. https://doi.org/10.1186/s13195-022-01055-y

Article  PubMed  PubMed Central  Google Scholar 

Abu Hamdeh S, Waara ER, Möller C, Söderberg L, Basun H, Alafuzoff I, Hillered L, Lannfelt L, Ingelsson M, Marklund N (2018) Rapid amyloid-β oligomer and protofibril accumulation in traumatic brain injury. Brain Pathol 28(4):451–462. https://doi.org/10.1111/bpa.12532

Article  CAS  PubMed  Google Scholar 

Ackers I, Malgor R (2018) Interrelationship of canonical and non-canonical Wnt signalling pathways in chronic metabolic diseases. Diab Vasc Dis Res 15(1):3–13. https://doi.org/10.1177/1479164117738442

Article  CAS  PubMed  Google Scholar 

Ai X, Do AT, Lozynska O, Kusche-Gullberg M, Lindahl U, Emerson CP Jr (2003) QSulf1 remodels the 6-O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling. J Cell Biol 162(2):341–351. https://doi.org/10.1083/jcb.200212083

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aikawa J, Esko JD (1999) Molecular cloning and expression of a third member of the heparan sulfate/heparin GlcNAc N-deacetylase/ N-sulfotransferase family. J Biol Chem 274(5):2690–2695. https://doi.org/10.1074/jbc.274.5.2690

Article  CAS  PubMed  Google Scholar 

Alfaro MP, Saraswati S, Young PP (2011) Molecular mediators of mesenchymal stem cell biology. Vitam Horm 87:39–59. https://doi.org/10.1016/B978-0-12-386015-6.00023-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andrzejewska A, Dabrowska S, Lukomska B, Janowski M (2021) Mesenchymal stem cells for neurological disorder. Adv Sci 8(7):2002944. https://doi.org/10.1002/advs.202002944

Article  CAS  Google Scholar 

Annaval T, Wild R, Cretinon Y, Sadir R, Vives RR, Lortat-Jacob H (2020) Heparan sulfate proteoglycans biosynthesis and post synthesis mechanisms combine few enzymes and few core proteins to generate extensive structural and functional diversity. Molecules. https://doi.org/10.3390/molecules25184215

Article  PubMed  PubMed Central  Google Scholar 

Awad W, Adamczyk B, Ornros J, Karlsson NG, Mani K, Logan DT (2015) Structural aspects of N-glycosylations and the C-terminal region in human glypican-1. J Biol Chem 290(38):22991–23008. https://doi.org/10.1074/jbc.M115.660878

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baldeiras I, Santana I, Leitão MJ, Gens H, Pascoal R, Tábuas-Pereira M, Beato-Coelho J, Duro D, Almeida MR, Oliveira CR (2018) Addition of the Aβ42/40 ratio to the cerebrospinal fluid biomarker profile increases the predictive value for underlying Alzheimer’s disease dementia in mild cognitive impairment. Alzheimer’s Res Ther 10(1):33. https://doi.org/10.1186/s13195-018-0362-2

Article  CAS  Google Scholar 

Banerjee S, Hashemi M, Zagorski K, Lyubchenko YL (2020) Interaction of Aβ42 with membranes triggers the self-assembly into oligomers. Int J Mol Sci 21(3):1129. https://doi.org/10.3390/ijms21031129

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berwick DC, Harvey K (2012) The importance of Wnt signalling for neurodegeneration in Parkinson’s disease. Biochem Soc Trans 40(5):1123–1128. https://doi.org/10.1042/BST20120122

Article  CAS  PubMed  Google Scholar 

Berzin TM, Zipser BD, Rafii MS, Kuo-Leblanc V, Yancopoulos GD, Glass DJ, Fallon JR, Stopa EG (2000) Agrin and microvascular damage in Alzheimer’s disease. Neurobiol Aging 21(2):349–355. https://doi.org/10.1016/s0197-4580(00)00121-4

Article  CAS  PubMed  Google Scholar 

Bettens K, Sleegers K, Van Broeckhoven C (2010) Current status on Alzheimer disease molecular genetics: from past, to present, to future. Human Mol Genet 19(R1):R4–R11. https://doi.org/10.1093/hmg/ddq142

Article  CAS  Google Scholar 

Boland GM, Perkins G, Hall DJ, Tuan RS (2004) Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells. J Cell Biochem 93(6):1210–1230. https://doi.org/10.1002/jcb.20284

Article  CAS  PubMed  Google Scholar 

Breijyeh Z, Karaman R (2020) Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules. https://doi.org/10.3390/molecules25245789

Article  PubMed  PubMed Central  Google Scholar 

Caillet-Boudin ML, Buee L, Sergeant N, Lefebvre B (2015) Regulation of human MAPT gene expression. Mol Neurodegener 10:28. https://doi.org/10.1186/s13024-015-0025-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen PH, Chen X, He X (2013) Platelet-derived growth factors and their receptors: structural and functional perspectives. Biochim Et Biophys Acta 1834(10):2176–2186. https://doi.org/10.1016/j.bbapap.2012.10.015

Article  CAS  Google Scholar 

Chen GF, Xu TH, Yan Y, Zhou YR, Jiang Y, Melcher K, Xu HE (2017) Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 38(9):1205–1235. https://doi.org/10.1038/aps.2017.28

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng F, Ruscher K, Fransson LA, Mani K (2013) Non-toxic amyloid beta formed in the presence of glypican-1 or its deaminatively generated heparan sulfate degradation products. Glycobiology 23(12):1510–1519. https://doi.org/10.1093/glycob/cwt079

Article  CAS  PubMed  Google Scholar 

Christianson H, Belting M (2014) Heparan sulfate proteoglycan as a cell-surface endocytosis receptor. Matrix Biol: J Int Soc Matrix Biol. https://doi.org/10.1016/j.matbio.2013.10.004

Article  Google Scholar 

Colombres M, Henriquez JP, Reig GF, Scheu J, Calderon R, Alvarez A, Brandan E, Inestrosa NC (2008) Heparin activates Wnt signaling for neuronal morphogenesis. J Cell Physiol 216(3):805–815. https://doi.org/10.1002/jcp.21465

Article  CAS  PubMed  Google Scholar 

Colucci-D’Amato L, Speranza L, Volpicelli F (2020) Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer. Int J Mol Sci 21(20):7777. https://doi.org/10.3390/ijms21207777

Article  CAS  PubMed  PubMed Central  Google Scholar 

Condomitti G, de Wit J (2018) Heparan sulfate proteoglycans as emerging players in synaptic specificity. Front Molecular Neurosci 11:14. https://doi.org/10.3389/fnmol.2018.00014

Article  CAS  Google Scholar 

Congdon EE, Sigurdsson EM (2018) Tau-targeting therapies for Alzheimer disease. Nat Rev Neurol 14(7):399–415. https://doi.org/10.1038/s41582-018-0013-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Couchman JR, Gopal S, Lim HC, Norgaard S, Multhaupt HA (2015) Fell-muir lecture: syndecans: from peripheral coreceptors to mainstream regulators of cell behaviour. Int J Exp Pathol 96(1):1–10. https://doi.org/10.1111/iep.12112

Article  CAS  PubMed  Google Scholar 

Cui H, Freeman C, Jacobson GA, Small DH (2013) Proteoglycans in the central nervous system: role in development, neural repair, and Alzheimer’s disease. IUBMB Life 65(2):108–120. https://doi.org/10.1002/iub.1118

Article  CAS  PubMed  Google Scholar 

Dams-O’Connor K, Guetta G, Hahn-Ketter AE, Fedor A (2016) Traumatic brain injury as a risk factor for Alzheimer’s disease: current knowledge and future directions. Neurodegener Dis Manag 6(5):417–429. https://doi.org/10.2217/nmt-2016-0017

Article  PubMed  PubMed Central  Google Scholar 

De Cat B, David G (2001) Developmental roles of the glypicans. Semin Cell Dev Biol 12(2):117–125. https://doi.org/10.1006/scdb.2000.0240

Article  CAS  PubMed  Google Scholar 

Debarnot C, Monneau YR, Roig-Zamboni V, Delauzun V, Le Narvor C, Richard E, Henault J, Goulet A, Fadel F, Vives RR, Priem B, Bonnaffe D, Lortat-Jacob H, Bourne Y (2019) Substrate binding mode and catalytic mechanism of human heparan sulfate d-glucuronyl C5 epimerase. Proc Natl Acad Sci U S A 116(14):6760–6765. https://doi.org/10.1073/pnas.1818333116

Article  CAS  PubMed  PubMed Central  Google Scholar 

DeKosky ST, Abrahamson EE, Ciallella JR, Paljug WR, Wisniewski SR, Clark RS, Ikonomovic MD (2007) Association of increased cortical soluble abeta42 levels with diffuse plaques after severe brain injury in humans. Arch Neurol 64(4):541–544. https://doi.org/10.1001/archneur.64.4.541

Article  PubMed  Google Scholar 

DeTure MA, Dickson DW (2019) The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 14(1):32. https://doi.org/10.1186/s13024-019-0333-5

Article  PubMed  PubMed Central  Google Scholar 

Dewan MC, Rattani A, Gupta S, Baticulon RE, Hung YC, Punchak M, Agrawal A, Adeleye AO, Shrime MG, Rubiano AM, Rosenfeld JV, Park KB (2018) Estimating the global incidence of traumatic brain injury. J Neurosurg 130(4):1080–1097. https://doi.org/10.3171/2017.10.JNS17352

Article  PubMed 

留言 (0)

沒有登入
gif