The marine-derived compound TAG alleviates Parkinson’s disease by restoring RUBCN-mediated lipid metabolism homeostasis

Samii A, Nutt JG, Ransom BR. Parkinson’s disease. Lancet. 2004;363:1783–93.

Article  CAS  PubMed  Google Scholar 

Balestrino R, Schapira AHV. Parkinson disease. Eur J Neurol. 2020;27:27–42.

Article  CAS  PubMed  Google Scholar 

Shulman JM, De Jager PL, Feany MB. Parkinson’s disease: genetics and pathogenesis. Annu Rev Pathol. 2011;6:193–222.

Article  CAS  PubMed  Google Scholar 

Moustafa AA, Chakravarthy S, Phillips JR, Gupta A, Keri S, Polner B, et al. Motor symptoms in Parkinson’s disease: a unified framework. Neurosci Biobehav Rev. 2016;68:727–40.

Article  PubMed  Google Scholar 

Ko YF, Kuo PH, Wang CF, Chen YJ, Chuang PC, Li SZ, et al. Quantification analysis of sleep based on smartwatch sensors for Parkinson’s disease. Biosensors. 2022;12:74.

Article  PubMed  PubMed Central  Google Scholar 

Schrag A, Horsfall L, Walters K, Noyce A, Petersen I. Prediagnostic presentations of Parkinson’s disease in primary care: a case-control study. Lancet Neurol. 2015;14:57–64.

Article  PubMed  Google Scholar 

Day JO, Mullin S. The genetics of Parkinson’s disease and implications for clinical practice. Genes. 2021;12:1006.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barreto GE, Iarkov A, Moran VE. Beneficial effects of nicotine, cotinine and its metabolites as potential agents for Parkinson’s disease. Front Aging Neurosci. 2014;6:340.

PubMed  Google Scholar 

Aryal B, Lee Y. Disease model organism for Parkinson disease: Drosophila melanogaster. BMB Rep. 2019;52:250–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cacabelos R. Parkinson’s disease: from pathogenesis to pharmacogenomics. Int J Mol Sci. 2017;18:551.

Article  PubMed  PubMed Central  Google Scholar 

Sagar S, Kaur M, Minneman KP. Antiviral lead compounds from marine sponges. Mar Drugs. 2010;8:2619–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang B, Zhang T, Xu J, Lu J, Qiu P, Wang T, et al. Marine sponge-associated Fungi as potential novel bioactive natural product sources for drug discovery: a review. Mini Rev Med Chem. 2020;20:1966–2010.

Article  CAS  PubMed  Google Scholar 

Lin Z, Phadke S, Lu Z, Beyhan S, Abdel Aziz MH, Reilly C, et al. Onydecalins, fungal polyketides with anti- Histoplasma and anti-TRP activity. J Nat Prod. 2018;81:2605–11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shah M, Sun C, Sun Z, Zhang G, Che Q, Gu Q, et al. Antibacterial polyketides from Antarctica sponge-derived fungus Penicillium sp. HDN151272. Mar Drugs. 2020;18:71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Z, Qiu P, Liu H, Li J, Shao C, Yan T, et al. Identification of anti-inflammatory polyketides from the coral-derived fungus Penicillium sclerotiorin: In vitro approaches and molecular-modeling. Bioorg Chem. 2019;88:102973.

Article  CAS  PubMed  Google Scholar 

Zhang Q, Su G, Yang Q, Wei Z, Wang J, Zheng L, et al. Round scad-derived octapeptide WCPFSRSF confers neuroprotection by regulating Akt/Nrf2/NFκB signaling. J Agric Food Chem. 2021;69:10606–16.

Article  CAS  PubMed  Google Scholar 

Catanesi M, Caioni G, Castelli V, Benedetti E, d’Angelo M, Cimini A. Benefits under the sea: the role of marine compounds in neurodegenerative disorders. Mar Drugs. 2021;19:24.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Silva J, Alves C, Pinteus S, Susano P, Simões M, Guedes M, et al. Disclosing the potential of eleganolone for Parkinson’s disease therapeutics: Neuroprotective and anti-inflammatory activities. Pharmacol Res. 2021;168:105589.

Article  CAS  PubMed  Google Scholar 

Kolesnikova SA, Lyakhova EG, Kalinovsky AI, Popov RS, Yurchenko EA, Stonik VA. Oxysterols from a marine sponge inflatella sp. and their action in 6-hydroxydopamine-induced cell model of Parkinson’s disease. Mar Drugs. 2018;16:458.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Letsiou S, Bakea A, Goff GL, Lopes P, Gardikis K, Weis M, et al. Marine fungus Aspergillus chevalieri TM2-S6 extract protects skin fibroblasts from oxidative stress. Mar Drugs. 2020;18:460.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stern JH, Rutkowski JM, Scherer PE. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab. 2016;23:770–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu J, Huang X. Lipid metabolism at membrane contacts: dynamics and functions beyond lipid homeostasis. Front Cell Dev Biol. 2020;8:615856.

Article  PubMed  PubMed Central  Google Scholar 

Tong Y, Sun Y, Tian X, Zhou T, Wang H, Zhang T, et al. Phospholipid transfer protein (PLTP) deficiency accelerates memory dysfunction through altering amyloid precursor protein (APP) processing in a mouse model of Alzheimer’s disease. Hum Mol Genet. 2015;24:5388–403.

Article  CAS  PubMed  Google Scholar 

Galper J, Kim WS, Dzamko N. LRRK2 and lipid pathways: implications for Parkinson’s disease. Biomolecules. 2022;12:1597.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Phillips GR, Hancock SE, Brown SHJ, Jenner AM, Kreilaus F, Newell KA, et al. Cholesteryl ester levels are elevated in the caudate and putamen of Huntington’s disease patients. Sci Rep. 2020;10:20314.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie J, Duan L, Qian X, Huang X, Ding J, Hu G. K(ATP) channel openers protect mesencephalic neurons against MPP+-induced cytotoxicity via inhibition of ROS production. J Neurosci Res. 2010;88:428–37.

Article  CAS  PubMed  Google Scholar 

Wei Y, Lu M, Mei M, Wang H, Han Z, Chen M, et al. Pyridoxine induces glutathione synthesis via PKM2-mediated Nrf2 transactivation and confers neuroprotection. Nat Commun. 2020;11:941.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ye H, Robak LA, Yu M, Cykowski M, Shulman JM. Genetics and pathogenesis of Parkinson’s syndrome. Annu Rev Pathol. 2023;18:95–121.

Article  CAS  PubMed  Google Scholar 

Nicholatos JW, Francisco AB, Bender CA, Yeh T, Lugay FJ, Salazar JE, et al. Nicotine promotes neuron survival and partially protects from Parkinson’s disease by suppressing SIRT6. Acta Neuropathol Commun. 2018;6:120.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davis S, Meltzer PS. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics. 2007;23:1846–7.

Article  PubMed  Google Scholar 

Lei Y, Xu X, Liu H, Chen L, Zhou H, Jiang J, et al. HBx induces hepatocellular carcinogenesis through ARRB1-mediated autophagy to drive the G1/S cycle. Autophagy. 2021;17:4423–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma X, McKeen T, Zhang J, Ding WX. Role and mechanisms of mitophagy in liver diseases. Cells. 2020;9:837.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng Y, Ning X, Wang J, Wen Z, Cao F, You Q, et al. Mace-like plasmonic Au-Pd heterostructures boost near-infrared photoimmunotherapy. Adv Sci. 2023;10:e2204842.

Article  Google Scholar 

Guo JD, Zhao X, Li Y, Li GR, Liu XL. Damage to dopaminergic neurons by oxidative stress in Parkinson’s disease. Int J Mol Med. 2018;41:1817–25.

CAS  PubMed  Google Scholar 

Sewastianik T, Straubhaar JR, Zhao JJ, Samur MK, Adler K, Tanton HE, et al. miR-15a/16-1 deletion in activated B cells promotes plasma cell and mature B-cell neoplasms. Blood. 2021;137:1905–19.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Castillo-Quan JI, Steinbaugh MJ, Fernández-Cárdenas LP, Pohl NK, Wu Z, Zhu F, et al. An antisteatosis response regulated by oleic acid through lipid droplet-mediated ERAD enhancement. Sci Adv. 2023;9:eadc8917.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif