Transcriptional regulation and post-translational modifications in the glycolytic pathway for targeted cancer therapy

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

Article  CAS  PubMed  Google Scholar 

Lopez-Lazaro M. The warburg effect: why and how do cancer cells activate glycolysis in the presence of oxygen? Anticancer Agents Med Chem. 2008;8:305–12.

Article  CAS  PubMed  Google Scholar 

Vaupel P, Schmidberger H, Mayer A. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol. 2019;95:912–9.

Article  CAS  PubMed  Google Scholar 

Marcucci F, Rumio C. On the role of glycolysis in early tumorigenesis-permissive and executioner effects. Cells. 2023;12:1124.

Article  CAS  PubMed  PubMed Central  Google Scholar 

TeSlaa T, Ralser M, Fan J, Rabinowitz JD. The pentose phosphate pathway in health and disease. Nat Metab. 2023;5:1275–89.

Article  CAS  PubMed  Google Scholar 

Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci. 2016;41:211–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4:891–9.

Article  CAS  PubMed  Google Scholar 

Wu W, Zhao S. Metabolic changes in cancer: beyond the Warburg effect. Acta Biochim Biophys Sin. 2013;45:18–26.

Article  CAS  PubMed  Google Scholar 

Wang Z, Wang N, Chen J, Shen J. Emerging glycolysis targeting and drug discovery from Chinese medicine in cancer therapy. Evid Based Complement Altern Med. 2012;2012:873175.

Google Scholar 

Lee SH, Golinska M, Griffiths JR. HIF-1-independent mechanisms regulating metabolic adaptation in hypoxic cancer cells. Cells. 2021;10:2371.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sawant Dessai A, Kalhotra P, Novickis AT, Dasgupta S. Regulation of tumor metabolism by post translational modifications on metabolic enzymes. Cancer Gene Ther. 2023;30:548–58.

Article  CAS  PubMed  Google Scholar 

Yu L, Chen X, Sun X, Wang L, Chen S. The glycolytic switch in tumors: how many players are involved? J Cancer. 2017;8:3430–40.

Article  PubMed  PubMed Central  Google Scholar 

Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol. 2005;202:654–62.

Article  CAS  PubMed  Google Scholar 

Ganapathy-Kanniappan S, Geschwind JF. Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol Cancer. 2013;12:152.

Article  PubMed  PubMed Central  Google Scholar 

Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Asp Med. 2013;34:121–38.

Article  CAS  Google Scholar 

Pliszka M, Szablewski L. Glucose transporters as a target for anticancer therapy. Cancers. 2021;13:4184.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meng Y, Xu X, Luan H, Li L, Dai W, Li Z, et al. The progress and development of GLUT1 inhibitors targeting cancer energy metabolism. Future Med Chem. 2019;11:2333–52.

Article  CAS  PubMed  Google Scholar 

Song MY, Lee DY, Yun SM, Kim EH. GLUT3 promotes epithelial-mesenchymal transition via TGF-beta/JNK/ATF2 signaling pathway in colorectal cancer cells. Biomedicines. 2022;10:1837.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reckzeh ES, Karageorgis G, Schwalfenberg M, Ceballos J, Nowacki J, Stroet MCM, et al. Inhibition of glucose transporters and glutaminase synergistically impairs tumor cell growth. Cell Chem Biol. 2019;26:1214–28.e25.

Article  CAS  PubMed  Google Scholar 

Ceballos J, Schwalfenberg M, Karageorgis G, Reckzeh ES, Sievers S, Ostermann C, et al. Synthesis of indomorphan pseudo-natural product inhibitors of glucose transporters GLUT-1 and -3. Angew Chem Int Ed Engl. 2019;58:17016–25.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun Y, Duan X, Wang F, Tan H, Hu J, Bai W, et al. Inhibitory effects of flavonoids on glucose transporter 1 (GLUT1): From library screening to biological evaluation to structure-activity relationship. Toxicology. 2023;488:153475.

Article  CAS  PubMed  Google Scholar 

Liu Y, Cao Y, Zhang W, Bergmeier S, Qian Y, Akbar H, et al. A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Ther. 2012;11:1672–82.

Article  CAS  PubMed  Google Scholar 

Sawayama H, Ogata Y, Ishimoto T, Mima K, Hiyoshi Y, Iwatsuki M, et al. Glucose transporter 1 regulates the proliferation and cisplatin sensitivity of esophageal cancer. Cancer Sci. 2019;110:1705–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Zhang W, Cao Y, Liu Y, Bergmeier S, Chen X. Small compound inhibitors of basal glucose transport inhibit cell proliferation and induce apoptosis in cancer cells via glucose-deprivation-like mechanisms. Cancer Lett. 2010;298:176–85.

Article  CAS  PubMed  Google Scholar 

Gao P, Shen S, Li X, Liu D, Meng Y, Liu Y, et al. Dihydroartemisinin inhibits the proliferation of leukemia cells K562 by suppressing PKM2 and GLUT1 mediated aerobic glycolysis. Drug Des Devel Ther. 2020;14:2091–100.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang D, Wang Y, Dong L, Huang Y, Yuan J, Ben W, et al. Therapeutic role of EF24 targeting glucose transporter 1-mediated metabolism and metastasis in ovarian cancer cells. Cancer Sci. 2013;104:1690–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matsumoto T, Jimi S, Migita K, Takamatsu Y, Hara S. Inhibition of glucose transporter 1 induces apoptosis and sensitizes multiple myeloma cells to conventional chemotherapeutic agents. Leuk Res. 2016;41:103–10.

Article  CAS  PubMed  Google Scholar 

Gou Q, Dong C, Jin J, Liu Q, Lu W, Shi J, et al. PPARα agonist alleviates tumor growth and chemo-resistance associated with the inhibition of glucose metabolic pathway. Eur J Pharmacol. 2019;863:172664.

Article  CAS  PubMed  Google Scholar 

Chen X, Zhao Y, He C, Gao G, Li J, Qiu L, et al. Identification of a novel GLUT1 inhibitor with in vitro and in vivo anti-tumor activity. Int J Biol Macromol. 2022;216:768–78.

Article  CAS  PubMed  Google Scholar 

Hu Y, Yang Z, Bao D, Ni JS, Lou J. miR-455-5p suppresses hepatocellular carcinoma cell growth and invasion via IGF-1R/AKT/GLUT1 pathway by targeting IGF-1R. Pathol Res Pr. 2019;215:152674.

Article  CAS  Google Scholar 

Ren L, Yao Y, Wang Y, Wang S. MiR-505 suppressed the growth of hepatocellular carcinoma cells via targeting IGF-1R. Biosci Rep. 2019;39:BSR20182442.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen B, Tang H, Liu X, Liu P, Yang L, Xie X, et al. miR-22 as a prognostic factor targets glucose transporter protein type 1 in breast cancer. Cancer Lett. 2015;356:410–7.

Article  CAS  PubMed  Google Scholar 

Tu MJ, Duan Z, Liu Z, Zhang C, Bold RJ, Gonzalez FJ, et al. MicroRNA-1291-5p sensitizes pancreatic carcinoma cells to arginine deprivation and chemotherapy through the regulation of arginolysis and glycolysis. Mol Pharmacol. 2020;98:686–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamasaki T, Seki N, Yoshino H, Itesako T, Yamada Y, Tatarano S, et al. Tumor-suppressive microRNA-1291 directly regulates glucose transporter 1 in renal cell carcinoma. Cancer Sci. 2013;104:1411–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He Y, Deng F, Zhao S, Zhong S, Zhao J, Wang D, et al. Analysis of miRNA-mRNA network reveals miR-140-5p as a suppressor of breast cancer glycolysis via targeting GLUT1. Epigenomics. 2019;11:1021–36.

Article  CAS  PubMed  Google Scholar 

Zhang T, Zhang Z, Li F, Ping Y, Qin G, Zhang C, et al. miR-143 regulates memory T cell differentiation by reprogramming T cell metabolism. J Immunol. 2018;201:2165–75.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif