Ripretinib inhibits HIV-1 transcription through modulation of PI3K-AKT-mTOR

Hütter G, Nowak D, Mossner M, Ganepola S, Müssig A, Allers K, et al. Long-term control of HIV by CCR5Δ32/Δ32 stem-cell transplantation. N Engl J Med. 2009;360:692–8.

Article  PubMed  Google Scholar 

Gupta RK, Abdul-Jawad S, McCoy LE, Mok HP, Peppa D, Salgado M, et al. HIV-1 remission following CCR5Δ32/Δ32 haematopoietic stem-cell transplantation. Nature. 2019;568:244–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deeks SG, Archin N, Cannon P, Collins S, Jones RB, de Jong MAWP, et al. Research priorities for an HIV cure: international AIDS society global scientific strategy 2021. Nat Med. 2021;27:2085–98.

Article  CAS  PubMed  Google Scholar 

Chen J, Zhou T, Zhang Y, Luo S, Chen H, Chen D, et al. The reservoir of latent HIV. Front Cell Infect Microbiol. 2022;12:945–6.

Google Scholar 

Simonetti FR, Sobolewski MD, Fyne E, Shao W, Spindler J, Hattori J, et al. Clonally expanded CD4+ T cells can produce infectious HIV-1 in vivo. Proc Natl Acad Sci USA. 2016;113:1883–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saag MS, Kilby JM. HIV-1 and HAART: a time to cure, a time to kill. Nat Med. 1999;5:609–11.

Article  CAS  PubMed  Google Scholar 

Li M, Budai MM, Chen M, Wang J. Targeting HIV-1 reservoirs in T cell subsets. Front Immunol. 2023;14:1087923.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perkins MJ, Bradley WP, Lalani T, Agan BK, Whitman TJ, Ferguson TM, et al. Brief report: prevalence of posttreatment controller phenotype is rare in HIV-infected persons after stopping antiretroviral therapy. J Acquir Immune Defic Syndr. 2017;75:364–9.

Article  PubMed  PubMed Central  Google Scholar 

Lee GQ, Orlova-Fink N, Einkauf K, Chowdhury FZ, Sun X, Harrington S, et al. Clonal expansion of genome-intact HIV-1 in functionally polarized Th1 CD4+ T cells. J Clin Invest. 2017;127:2689–96.

Article  PubMed  PubMed Central  Google Scholar 

Dai W, Wu F, McMyn N, Song B, Walker-Sperling VE, Varriale J, et al. Genome-wide CRISPR screens identify combinations of candidate latency reversing agents for targeting the latent HIV-1 reservoir. Sci Transl Med. 2022;14:h3351.

Article  Google Scholar 

Kim Y, Anderson JL, Lewin SR. Getting the “kill” into “shock and kill”: strategies to eliminate latent HIV. Cell Host Microbe. 2018;23:14–26.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Margolis DM, Garcia JV, Hazuda DJ, Haynes BF. Latency reversal and viral clearance to cure HIV-1. Science. 2016;353:aaf6517.

Article  PubMed  PubMed Central  Google Scholar 

Abner E, Jordan A. HIV “shock and kill” therapy: In need of revision. Antivir Res. 2019;166:19–34.

Article  CAS  PubMed  Google Scholar 

Victoriano AF, Okamoto T. Transcriptional control of HIV replication by multiple modulators and their implication for a novel antiviral therapy. AIDS Res Hum Retroviruses. 2012;28:125–38.

Article  CAS  PubMed  Google Scholar 

Lian X, Seiger KW, Parsons EM, Gao C, Sun W, Gladkov GT, et al. Progressive transformation of the HIV-1 reservoir cell profile over two decades of antiviral therapy. Cell Host Microbe. 2023;31:83–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vansant G, Bruggemans A, Janssens J, Debyser Z. Block-and-lock strategies to cure HIV infection. Viruses. 2020;12:84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li C, Mori L, Valente ST. The block-and-lock strategy for human immunodeficiency virus cure: lessons learned from didehydro–cortistatin A. J Infect Dis. 2021;223:46–53.

Article  PubMed  Google Scholar 

Mousseau G, Mediouni S, Valente ST. Targeting HIV transcription: the quest for a functional cure. Curr Top Microbiol Immunol. 2015;389:121–45.

CAS  PubMed  PubMed Central  Google Scholar 

Mediouni S, Chinthalapudi K, Ekka MK, Usui I, Jablonski JA, Clementz MA, et al. Didehydro-cortistatin A inhibits HIV-1 by specifically binding to the unstructured basic region of Tat. mBio. 2019;10:10–1128.

Article  Google Scholar 

Ling L, Leda AR, Begum N, Spagnuolo RA, Wahl A, Garcia JV, et al. Loss of in vivo replication fitness of HIV-1 variants resistant to the Tat inhibitor, dCA. Viruses. 2023;15:950.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davidson A, Leeper TC, Athanassiou Z, Patora-Komisarska K, Karn J, Robinson JA, et al. Simultaneous recognition of HIV-1 TAR RNA bulge and loop sequences by cyclic peptide mimics of Tat protein. Proc Natl Acad Sci USA. 2009;106:11931–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karn J. The molecular biology of HIV latency: breaking and restoring the Tat-dependent transcriptional circuit. Curr Opin HIV AIDS. 2011;6:4–11.

Article  PubMed  PubMed Central  Google Scholar 

Mediouni S, Jablonski J, Paris JJ, Clementz MA, Thenin-Houssier S, McLaughlin JP, et al. Didehydro-cortistatin A inhibits HIV-1 Tat-mediated neuroinflammation and prevents potentiation of cocaine reward in Tat transgenic mice. Curr HIV Res. 2015;13:64–79.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jordan A, Bisgrove D, Verdin E. HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J. 2003;22:1868–77.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai J, Gao H, Zhao J, Hu S, Liang X, Yang Y, et al. Infection with a newly designed dual fluorescent reporter HIV-1 effectively identifies latently infected CD4+ T cells. Elife. 2021;10:e63810.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smith BD, Kaufman MD, Lu WP, Gupta A, Leary CB, Wise SC, et al. Ripretinib (DCC-2618) is a switch control kinase inhibitor of a broad spectrum of oncogenic and drug-resistant KIT and PDGFRA variants. Cancer Cell. 2019;35:738–51.

Article  CAS  PubMed  Google Scholar 

Zalcberg JR. Ripretinib for the treatment of advanced gastrointestinal stromal tumor. Ther Adv Gastroenterol. 2021;14:1088191153.

Article  Google Scholar 

Villanueva MT. Ripretinib turns off the switch in GIST. Nat Rev Drug Discov. 2019;18:499.

Article  CAS  PubMed  Google Scholar 

Wan Z, Chen X. Triptolide inhibits human immunodeficiency virus type 1 replication by promoting proteasomal degradation of Tat protein. Retrovirology. 2014;11:1–13.

Article  Google Scholar 

Huang T, Cai J, Wang P, Zhou J, Zhang H, Wu Z, et al. Ponatinib represses latent HIV-1 by inhibiting AKT-mTOR. Antimicrob Agents Chemother. 2023;67:e00067–23.

Article  PubMed  PubMed Central  Google Scholar 

Yang HC, Xing S, Shan L, O’Connell K, Dinoso J, Shen A, et al. Small-molecule screening using a human primary cell model of HIV latency identifies compounds that reverse latency without cellular activation. J Clin Invest. 2009;119:3473–86.

CAS  PubMed  PubMed Central  Google Scholar 

Anderson I, Low JS, Weston S, Weinberger M, Zhyvoloup A, Labokha AA, et al. Heat shock protein 90 controls HIV-1 reactivation from latency. Proc Natl Acad Sci USA. 2014;111:1528–37.

Article  Google Scholar 

Pande V, Ramos M. Nuclear factor kappa B: a potential target for anti-HIV chemotherapy. Curr Med Chem. 2003;10:1603–15.

Article  CAS  PubMed  Google Scholar 

Budhiraja S, Rice AP. Reactivation of latent HIV: do all roads go through P-TEFb? Future Virol. 2013;8:649–59.

Article  CAS  Google Scholar 

Gupta AK, Li B, Cerniglia GJ, Ahmed MS, Hahn SM, Maity A, et al. The HIV protease inhibitor nelfinavir downregulates Akt phosphorylation by inhibiting proteasomal activity and inducing the unfolded protein response. Neoplasia. 2007;9:271–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chugh P, Bradel-Tretheway B, Monteiro-Filho CM, Planelles V, Maggirwar SB, Dewhurst S, et al. Akt inhibitors as an HIV-1 infected macrophage-specific anti-viral therapy. Retrovirology. 2008;5:1–13.

Article  Google Scholar 

Pajonk F, Himmelsbach J, Riess K, Sommer A, McBride WH. The human immunodeficiency virus (HIV)-1 protease inhibitor saquinavir inhibits proteasome function and causes apoptosis and radiosensitization in non-HIV-associated human cancer cells. Cancer Res. 2002;62:5230–5.

CAS  PubMed  Google Scholar 

Pasquereau S, Herbein G. CounterAKTing HIV: toward a “block and clear” strategy? Front Cell Infect Microbiol. 2022;12:827717.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif