Rolapitant treats lung cancer by targeting deubiquitinase OTUD3

Sung H, Ferlay J, Siegel R, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: Cancer J Clin. 2021;71:209–49.

PubMed  Google Scholar 

Du T, Li H, Fan Y, Yuan L, Guo X, Zhu Q, Yao Y, Li X, Liu C, Yu X, Liu Z, Cui C, Han C, Zhang L. The deubiquitylase OTUD3 stabilizes GRP78 and promotes lung tumorigenesis. Nat Commun. 2019;10:2914.

Article  PubMed  PubMed Central  Google Scholar 

Herbst R, Morgensztern D, Boshoff CJN. The biology and management of non-small cell lung cancer. Nature. 2018;553:446–54.

Sarmento-Ribeiro A, Scorilas A, Gonçalves A, Efferth T, Trougakos IP, C.I. Antimicrobial, A. chemotherapy. The emergence of drug resistance to targeted cancer therapies. Clin Evid. 2019;47:100646.

Google Scholar 

Sharma P, Hu-Lieskovan S, Wargo J, Ribas AJC. Primary, adaptive, and acquired resistance to Cancer. Immunotherapy. 2017;168:707–23.

Harrigan J, Jacq X, Martin N, Jackson S. Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat Rev Drug. 2018;17:57–78.

Article  CAS  Google Scholar 

Komander D, Clague M, Urbé S. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol. 2009;10:550–63.

Article  CAS  PubMed  Google Scholar 

Hoeller D, Dikic IJN. Targeting the ubiquitin system in cancer therapy. Nature. 2009;458:438–44.

Article  CAS  PubMed  Google Scholar 

Wertz I, Wang XJC. From discovery to bedside: targeting the ubiquitin. System. 2019;26:156–77.

CAS  Google Scholar 

Deng L, Meng T, Chen L, Wei W, Wang P, Therapy T. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther. 2020;5:11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liang Q, Dexheimer T, Zhang P, Rosenthal A, Villamil M, You C, Zhang Q, Chen J, Ott C, Sun H, Luci D, Yuan B, Simeonov A, Jadhav A, Xiao H, Wang Y, Maloney D, Zhuang ZJN. A selective USP1-UAF1 inhibitor links deubiquitination to DNA damage responses. Nat Chem Biol. 2014;10:298–304.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chauhan D, Tian Z, Nicholson B, Kumar K, Zhou B, Carrasco R, McDermott J, Leach C, Fulcinniti M, Kodrasov M, Weinstock J, Kingsbury W, Hideshima T, Shah P, Minvielle S, Altun M, Kessler B, Orlowski R, Richardson P, Munshi N, Anderson K. A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell. 2012;22:345–58.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gavory G, O’Dowd C, Helm M, Flasz J, Arkoudis E, Dossang A, Hughes C, Cassidy E, McClelland K, Odrzywol E, Page N, Barker O, Miel H. Harrison, Discovery and characterization of highly potent and selective allosteric USP7 inhibitors. Nat Chem Biol. 2018;14:118–25.

Article  CAS  PubMed  Google Scholar 

Xu Y, Xu M, Tong J, Tang X, Chen J, Chen X, Zhang Z, Cao B, Stewart A, Moran M, Wu D, Mao XJB. Targeting the Otub1/c-Maf axis for the treatment of multiple myeloma. Blood J Am Soc Hematol. 2021;137:1478–90.

CAS  Google Scholar 

Xu Y, Sun T, Zeng K, Xu M, Chen J, Xu X, Zhang Z, Cao B, Tang X, Wu D, Kong Y, Zeng Y, Mao X. Anti-bacterial and anti-viral nanchangmycin displays anti-myeloma activity by targeting Otub1 and c-Maf. Cell Death Dis. 2020;11:818.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun T, Xu Y, Xu Z, Cao B, Zhang Z, Wang Q, Kong Y, Mao X. Inhibition of the Otub1/c-Maf axis by the herbal acevaltrate induces myeloma cell apoptosis. Cell Commun Signal. 2021;19:24.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang P, Li C, Li H, Yuan L, Dai H, Peng Z, Deng Z, Chang Z, Cui C, Zhang L. Ubiquitin ligase CHIP regulates OTUD3 stability and suppresses tumour metastasis in lung cancer. Cell Death Differ. 2020;27:3177–95.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Munro S, Pelham HJC. An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell. 1986;46:291–300.

Article  CAS  PubMed  Google Scholar 

Glass S, Leddy S, Orwin M, Miller G, Furge K, Furge L. Rolapitant Is a Reversible Inhibitor of CYP2D6. Drug Metab Dispos. 2019;47:567–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ralff M, El-Deiry WJ. TRAIL pathway targeting therapeutics. Expert Rev Precis. 2018;3:197–204.

Google Scholar 

Suliman A, Lam A, Datta R, Srivastava RJO. Intracellular mechanisms of TRAIL: apoptosis through mitochondrial-dependent and -independent pathways. Oncogene. 2001;20:2122–33.

Article  CAS  PubMed  Google Scholar 

Dickens L, Boyd R, Jukes-Jones R, Hughes M, Robinson G, Fairall L, Schwabe J, Cain K, Macfarlane M. A death effector domain chain DISC model reveals a crucial role for caspase-8 chain assembly in mediating apoptotic cell death. Mol Cell. 2012;47:291–305.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lam M, Marsters S, Ashkenazi A, Walter P. Misfolded proteins bind and activate death receptor 5 to trigger apoptosis during unresolved endoplasmic reticulum stress. Elife. 2020;9.

Twomey J, Kim S, Zhao L, Bozza W, Zhang B. Spatial dynamics of TRAIL death receptors in cancer cells. Drug Resist Updat. 2015;19:13–21.

Article  PubMed  Google Scholar 

Yuan L, Lv Y, Li H, Gao H, Song S, Zhang Y, Xing G, Kong X, Wang L, Li Y, Zhou T, Gao D, Xiao ZX, Yin Y, Wei W, He F, Zhang L. Deubiquitylase OTUD3 regulates PTEN stability and suppresses tumorigenesis. Nat Cell Biol. 2015;17:1169–81.

Du T, Li H, Fan Y, Yuan L, Guo X, Zhu Q, Yao Y, Li X, Liu C, Yu X, Liu Z, Cui CP, Han C, Zhang L. The deubiquitylase OTUD3 stabilizes GRP78 and promotes lung tumorigenesis. Nat Commun. 2019;10:2914.

Mevissen TE, Hospenthal MK, Geurink PP, Elliott PR, Akutsu M, Arnaudo N, Ekkebus R, Kulathu Y, Wauer T, El Oualid F, Freund SM, Ovaa H, Komander D. OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell. 2013;154:169–84.

Lange SM, Armstrong LA, Kulathu Y. Deubiquitinases: from mechanisms to their inhibition by small molecules. Mol Cell. 2022;82:15–29.

Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–61.

Dianat-Moghadam H, Heidarifard M, Mahari A, Shahgolzari M, Keshavarz M, Nouri M, Amoozgar Z. TRAIL in oncology: From recombinant TRAIL to nano- and self-targeted TRAIL-based therapies. Pharmacol Res. 2020;155:104716.

Article  CAS  PubMed  Google Scholar 

Wong S, Kong W, Fang C, Loh H, Chuah L, Abdullah S, Ngai S. The TRAIL to cancer therapy: Hindrances and potential solutions. Crit Rev Oncol/Hematol. 2019;143:81–94.

Article  PubMed  Google Scholar 

Li Y, Guo Y, Tang J, Jiang J, Chen Z. New insights into the roles of CHOP-induced apoptosis in ER stress. Acta Biochim Biophys Sin. 2015;47:146–7.

Article  PubMed  Google Scholar 

Chen P, Hu T, Liang Y, Li P, Chen X, Zhang J, Ma Y, Hao Q, Wang J, Zhang P, Zhang Y, Zhao H, Yang S, Yu J, Jeong LS, Qi H, Yang M, Hoffman RM, Dong Z, Jia L. Neddylation inhibition activates the extrinsic apoptosis pathway through ATF4-CHOP-DR5 Axis in human esophageal cancer cells. Cancer Res. 2016;22:4145–57.

Chen X, Cubillos-Ruiz JR. Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat Rev Cancer. 2021;21:71–88.

Di Conza G, Ho PC. ER stress responses: an emerging modulator for innate immunity. Cells. 2020;9.

Liu Z, Shi Q, Song X, Wang Y, Wang Y, Song E, Song Y. Activating transcription factor 4 (ATF4)-ATF3-C/EBP homologous protein (CHOP) Cascade shows an essential role in the ER stress-induced sensitization of Tetrachlorobenzoquinone-challenged PC12 cells to ROS-mediated apoptosis via death receptor 5 (DR5) signaling. Chem Res Toxicol. 2016;29:1510–8.

Moon DO, Park SY, Choi YH, Ahn JS, Kim GY. Guggulsterone sensitizes hepatoma cells to TRAIL-induced apoptosis through the induction of CHOP-dependent DR5: involvement of ROS-dependent ER-stress. Biochem Pharmacol. 2011;82:1641–50.

Lee AS. Glucose-regulated proteins in cancer: molecular mechanisms and therapeutic potential. Nat Rev Cancer. 2014;14:263–76.

Huang L, Jiang S, Shi Y. Tyrosine kinase inhibitors for solid tumors in the past 20 years (2001-2020). J Hematol Oncol. 2020;13:143.

Park K, Tan EH, O'Byrne K, Zhang L, Boyer M, Mok T, Hirsh V, Yang JC, Lee KH, Lu S, Shi Y, Kim SW, Laskin J, Kim DW, Arvis CD, Kölbeck K, Laurie SA, Tsai CM, Shahidi M, Kim M, Massey D, Zazulina V, Paz-Ares L. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-lung 7): a phase 2B, open-label, randomised controlled trial, the lancet. Oncology. 2016;17:577–89.

Hsu WH, Yang JC, Mok TS, Loong HH. Overview of current systemic management of EGFR-mutant NSCLC. Ann Oncol. 2018;29:i3-9.

Article  PubMed  Google Scholar 

Mevissen T, Komander D. Mechanisms of Deubiquitinase Specificity and Regulation. Annu Rev Biochem. 2017;86:159–92.

Article  CAS  PubMed  Google Scholar 

Cheng J, Guo J, North B, Wang B, Cui C, Li H, Tao K, Zhang L, Wei W. Functional analysis of deubiquitylating enzymes in tumorigenesis and development. Biochim Biophys Acta Rev Cancer. 2019;1872:188312.

Article  CAS  PubMed  Google Scholar 

Yuan L, Lv Y, Li H, Gao H, Song S, Zhang Y, Xing G, Kong X, Wang L, Li Y, Zhou T, Gao D, Xiao Z, Yin Y, Wei W, He F, Zhang L. Deubiquitylase OTUD3 regulates PTEN stability and suppresses tumorigenesis. Nat Cell Biol. 2015;17:1169–81.

Article  CAS  PubMed  Google Scholar 

Wang G, Wang X, Yu H, Wei S, Williams N, Holmes D, Halfmann R, Naidoo J, Wang L, Li L, Chen S, Harran P, Lei X, Wang X. Small-molecule activation of the TRAIL receptor DR5 in human cancer cells. Nat Chem Biol. 2013;9:84–9.

Article  PubMed  Google Scholar 

Liu X, Yue P, Chen S, Hu L, Lonial S, Khuri F, Sun S. The proteasome inhibitor PS-341 (bortezomib) up-regulates DR5 expression leading to induction of apoptosis and enhancement of TRAIL-induced apoptosis despite up-regulation of c-FLIP and survivin expression in human NSCLC cells. Cancer Res. 2007;67:4981–8.

Article  CAS  PubMed  Google Scholar 

Brooks A, Jacobsen K, Li W, Shanker A, Sayers T. Bortezomib sensitizes human renal cell carcinomas to TRAIL apoptosis through increased activation of caspase-8 in the death-inducing signaling complex. Mol Cancer Res. 2010;8:729–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nagalingam A, Kuppusamy P, Singh S, Sharma D, Saxena N. Mechanistic elucidation of the antitumor properties of withaferin a in breast cancer. Cancer Res. 2014;74:2617–29.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mert U, Sanlioglu AJC. Intracellular localization of DR5 and related regulatory pathways as a mechanism of resistance to TRAIL in cancer. Cell Mol Life Sci. 2017;74:245–55.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif