Polyploidy and mTOR signaling: a possible molecular link

Albertin W, Marullo P. Polyploidy in fungi: evolution after whole-genome duplication. Proc Royal Society B: Biol Sci. 2012;279:2497–509. https://royalsocietypublishing.org/doi/10.1098/rspb.2012.0434. Cited 2023 Jun 7.

Wagner P, Sonek J, Hoopmann M, Abele H, Kagan KO. First-trimester screening for trisomies 18 and 13, triploidy and Turner syndrome by detailed early anomaly scan. Ultrasound Obstet Gynecol. 2016;48:446–51.

Article  CAS  PubMed  Google Scholar 

Fox DT, Duronio RJ. Endoreplication and polyploidy: insights into development and disease. Development. 2013;140:3–12. https://journals.biologists.com/dev/article/140/1/3/76504/Endoreplication-and-polyploidy-insights-into. Cited 2023 Jun 2.

Lee HO, Davidson JM, Duronio RJ. Endoreplication: polyploidy with purpose. Genes Dev. 2009;23:2461–77. http://genesdev.cshlp.org/content/23/21/2461.full. Cited 2023 Jun 2.

Ramsey J, Schemske DW. Pathways, mechanisms, and rates of polyploid formation in flowering plants. 2003;29:467–501. https://www.annualreviews.org/doi/abs/10.1146/annurev.ecolsys.29.1.467. Cited 2023 Jun 7.

Anderson CA, Roberts S, Zhang H, Kelly CM, Kendall A, Lee C, et al. Ploidy variation in multinucleate cells changes under stress. Mol Biol Cell. 2015;26:1129–40. https://www.molbiolcell.org/doi/10.1091/mbc.E14-09-1375. Cited 2023 Jun 2.

Zhou X, Zhou M, Zheng M, Tian S, Yang X, Ning Y, et al. Polyploid giant cancer cells and cancer progression. Front Cell Dev Biol. 2022;10:2029.

Article  Google Scholar 

Gjelsvik KJ, Besen-McNally R, Losick VP. Solving the polyploid mystery in health and disease. Trends Genet 2019;35:6–14. http://www.cell.com/article/S0168952518301811/fulltext. Cited 2022 Aug 18.

Bergmann O, Derks W. Polyploidy in cardiomyocytes roadblock to heart regeneration? 2020; www.ahajournals.org/journal/res. Cited 2023 Jun 4.

Gentric G, Desdouets C. Polyploidization in Liver Tissue. Am J Pathol. 2014;184:322–31.

Article  CAS  PubMed  Google Scholar 

White JW, Swartz FJ, Swartz AF. Excess glucose intake induces accelerated β-cell polyploidization in normal mice: a possible deleterious effect. J Nutr. 1985;115:271–8. https://academic.oup.com/jn/article/115/2/271/4763045. Cited 2022 Aug 18.

Rancati G, Pavelka N, Fleharty B, Noll A, Trimble R, Walton K, et al. Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved cytokinesis motor. Cell. 2008;135:879–93. https://pubmed.ncbi.nlm.nih.gov/19041751/. Cited 2022 Aug 18.

Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease. Cell [Internet]. 2017;168:960–76. [cited 2021 Aug 7]. Available from: http://www.cell.com/article/S0092867417301824/fulltext.

Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol [Internet]. 2011;12:21–35. [cited 2023 Jun 9]. Available from: https://pubmed.ncbi.nlm.nih.gov/21157483/.

Howell JJ, Hellberg K, Turner M, Talbott G, Kolar MJ, Ross DS, et al. Metformin Inhibits Hepatic mTORC1 Signaling via Dose-Dependent Mechanisms Involving AMPK and the TSC Complex. Cell Metab [Internet]. 2017;25:463–71. [cited 2023 Jun 10]. Available from: http://www.cell.com/article/S1550413116306428/fulltext.

Johnson SC, Rabinovitch PS, Kaeberlein M. mTOR is a key modulator of ageing and age-related disease. Nature [Internet]. 2013;493:338–45. [cited 2023 Jun 10]. Available from: https://www.nature.com/articles/nature11861.

Sidana S, Jevremovic D, Ketterling RP, Tandon N, Greipp PT, Baughn LB, et al. Tetraploidy is associated with poor prognosis at diagnosis in multiple myeloma. Am J Hematol [Internet]. 2019;94:E117–20. [cited 2023 Jun 4]. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/ajh.25420.

Ganem NJ, Storchova Z, Pellman D. Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev. 2007;17:157–62.

Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature [Internet]. 2005;437:1043–7. [cited 2023 Jun 5]. Available from: https://www.nature.com/articles/nature04217.

Storchova Z, Pellman D. From polyploidy to aneuploidy, genome instability and cancer. Nat Rev Mol Cell Biol [Internet]. 2004;5:45–54. [cited 2022 Feb 27]. Available from: https://pubmed.ncbi.nlm.nih.gov/14708009/.

Simonetti G, Bruno S, Padella A, Tenti E, Martinelli G. Aneuploidy: Cancer strength or vulnerability? Int J Cancer. 2019;144:8–25.

Weaver BAA, Cleveland DW. Aneuploidy: Instigator and Inhibitor of Tumorigenesis. Cancer Res [Internet]. 2007;67:10103–5. [cited 2022 Feb 27]. Available from: https://aacrjournals.org/cancerres/article/67/21/10103/533519/Aneuploidy-Instigator-and-Inhibitor-of.

Thomson GJ, Hernon C, Austriaco N, Shapiro RS, Belenky P, Bennett RJ. Metabolism-induced oxidative stress and DNA damage selectively trigger genome instability in polyploid fungal cells. EMBO J [Internet]. 2019;38:e101597. [cited 2023 Jun 7]. Available from: https://onlinelibrary.wiley.com/doi/full/10.15252/embj.2019101597.

Margolis RL, Lohez OD, Andreassen PR. G1 tetraploidy checkpoint and the suppression of tumorigenesis. J Cell Biochem [Internet]. 2003;88:673–83. [cited 2023 Jun 8]. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/jcb.10411.

Borel F, Lohez OD, Lacroix FB, Margolis RL. Multiple centrosomes arise from tetraploidy checkpoint failure and mitotic centrosome clusters in p53 and RB pocket protein compromised cells. Proc Natl Acad Sci U S A [Internet]. 2002;99:9819–24. [cited 2023 Jun 8]. Available from: https://pubmed.ncbi.nlm.nih.gov/12119403/.

Liu Y, Shi Y, Wu M, Liu J, Wu H, Xu C, et al. Hypoxia-induced polypoid giant cancer cells in glioma promote the transformation of tumor-associated macrophages to a tumor-supportive phenotype. CNS Neurosci Ther [Internet]. 2022;28:1326–38. [cited 2023 Jun 6]. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/cns.13892.

Sharma S, Zeng JY, Zhuang CM, Zhou YQ, Yao HP, Hu X, et al. Small-molecule inhibitor BMS-777607 induces breast cancer cell polyploidy with increased resistance to cytotoxic chemotherapy agents. Mol Cancer Ther [Internet]. 2013;12:725–36. [cited 2023 Jun 4]. Available from: https://aacrjournals.org/mct/article/12/5/725/91533/Small-Molecule-Inhibitor-BMS-777607-Induces-Breast.

Zhang Z, Feng X, Deng Z, Cheng J, Wang Y, Zhao M, et al. Irradiation-induced polyploid giant cancer cells are involved in tumor cell repopulation via neosis. Mol Oncol. 2021;15:2219–34.

Zhang D, Yang X, Yang Z, Fei F, Li S, Qu J, et al. Daughter Cells and Erythroid Cells Budding from PGCCs and Their Clinicopathological Significances in Colorectal Cancer. J Cancer [Internet]. 2017;8:469–78. [cited 2023 Jun 6]. Available from: http://www.jcancer.org.

Zhang S, Mercado-Uribe I, Xing Z, Sun B, Kuang J, Liu J. Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene [Internet]. 2013;33:116–28. [cited 2024 Jan 27]. Available from: https://www.nature.com/articles/onc201396.

Niu N, Mercado-Uribe I, Liu J. Dedifferentiation into blastomere-like cancer stem cells via formation of polyploid giant cancer cells. Oncogene [Internet]. 2017;36:4887–900. [cited 2023 Jun 6]. Available from: https://www.nature.com/articles/onc201772.

Huehns ER, Farooqui AM. Oxygen dissociation properties of human embryonic red cells. Nature. 1975;254:5498 [Internet]. 1975;254:335–7. [cited 2023 Jun 6]. Available from: https://www.nature.com/articles/254335a0.

Zhang S, Mercado-Uribe I, Liu J. Generation of erythroid cells from fibroblasts and cancer cells in vitro and in vivo. Cancer Lett. 2013;333:205–12.

Miranda MA, Macias-Velasco JF, Lawson HA. Pancreatic β-cell heterogeneity in health and diabetes: Classes, sources, and subtypes. Am J Physiol Endocrinol Metab [Internet]. 2021;320:E716–31. [cited 2023 Jun 8]. Available from: https://journals.physiology.org/doi/10.1152/ajpendo.00649.2020.

Ehrie MG, Swartz FJ. Polyploidy in the pancreas of the normal and diabetic mutant mouse. Diabetologia [Internet]. 1976;12:167–70. [cited 2023 Jun 8]. Available from: https://link.springer.com/article/10.1007/BF00428984.

Pohl MN, Swartz FJ, Carstens PHB. Polyploidy in islets of normal and diabetic humans. Hum Pathol. 1981;12:184–6.

Ghiraldini FG, Silva IS, Mello MLS. Polyploidy and chromatin remodeling in hepatocytes from insulin-dependent diabetic and normoglycemic aged mice. Cytometry Part A [Internet]. 2012;81A:755–64. [cited 2023 Jun 8]. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/cyto.a.22102.

Brown AS, Hong Y, De Belder A, Beacon H, Beeso J, Sherwood R, et al. Megakaryocyte Ploidy and Platelet Changes in Human Diabetes and Atherosclerosis. Arterioscler Thromb Vasc Biol [Internet]. 1997;802–7. [cited 2023 Jun 8]. Available from: http://ahajournals.org.

Murakami T, Inagaki N, Kondoh H. Cellular Senescence in Diabetes Mellitus: Distinct Senotherapeutic Strategies for Adipose Tissue and Pancreatic β Cells. Front Endocrinol (Lausanne). 2022;13:499.

Tatewaki R, Kagohashi Y, Otani H. Analysis of polyploid cells in mouse embryonic cells cultured under diabetic conditions. Congenit Anom (Kyoto) [Internet]. 2006;46:149–54. [cited 2023 Jun 8]. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1741-4520.2006.00118.x.

Trefts E, Gannon M, Wasserman DH. The liver. Current Biology [Internet]. 2017;27:R1147–51. [cited 2023 Jun 9]. Available from: http://www.cell.com/article/S0960982217311831/fulltext.

Sladky VC, Akbari H, Tapias-Gomez D, Evans LT, Drown CG, Strong MA, et al. Centriole signaling restricts hepatocyte ploidy to maintain liver integrity. Genes Dev [Internet]. 2022;36:843–56. [cited 2024 Jan 26]. Available from: http://genesdev.cshlp.org/content/36/13-14/843.full.

Clerbaux LA, Cordier P, Desboeufs N, Unger K, Leary P, Semere G, et al. Mcl-1 deficiency in murine livers leads to nuclear polyploidisation and mitotic errors: Implications for hepatocellular carcinoma. JHEP Reports. 2023;5:100838.

Garcia‐Carpio I, Braun VZ, Weiler ES, Leone M, Niñerola S, Barco A, et al. Extra centrosomes induce PIDD1 ‐mediated inflammation and immunosurveillance . EMBO J [Internet]. 2023;42. [cited 2024 Jan 26]. Available from: https://www.embopress.org/doi/10.15252/embj.2023113510.

Matsumoto T, Wakefield L, Tarlow BD, Grompe M. In Vivo Lineage Tracing of Polyploid Hepatocytes Reveals Extensive Proliferation during Liver Regeneration. Cell Stem Cell [Internet]. 2020;26:34-47.e3. [cited 2024 Jan 26]. Available from: http://www.cell.com/article/S1934590919304692/fulltext.

Matsumoto T, Wakefield L, Grompe M. The Significance of Polyploid Hepatocytes During Aging Process. CMGH [Internet]. 2021;11:1347–9. [cited 2024 Jan 26]. Available from: http://www.cmghjournal.org/article/S2352345X20302101/fulltext.

Wang MJ, Chen F, Lau JTY, Hu YP. Hepatocyte polyploidization and its association with pathophysiological processes. Cell Death & Disease 2017 8:5 [Internet]. 2017;8:e2805. [cited 2023 Jun 8]. Available from: https://www.nature.com/articles/cddis2017167.

Nguyen HG, Ravid K. Polyploidy: Mechanisms and cancer promotion in hematopoietic and other cells. Adv Exp Med Biol [Internet]. 2010;675:105–22. [cited 2023 Jun 8]. Available from: https://link.springer.com/chapter/10.1007/978-1-4419-6199-0_7.

Frade JM, Ovejero-Benito MC. Neuronal cell cycle: the neuron itself and its circumstances. http://dx.doi.org/101080/1538410120151004937 [Internet]. 2015;14:712–20. [cited 2023 Jun 8]. Available from: https://www.tandfonline.com/doi/abs/10.1080/15384101.2015.1004937.

Zhu X, Siedlak SL, Wang Y, Perry G, Castellana RJ, Cohen ML, et al. Neuronal binucleation in Alzheimer disease hippocampus. Neuropathol Appl Neurobiol [Internet]. 2008;34:457–65. [cited 2023 Jun 8]. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2990.2007.00908.x.

Schoenfelder KP, Fox DT. The expanding implications of polyploidy. Journal of Cell Biology [Internet]. 2015;209:485–91. [cited 2024 Jan 26]. Available from: www.jcb.org/cgi/doi/10.1083/jcb.201502016.

Edgar BA, Orr-Weaver TL. Endoreplication cell cycles: More for less. Cell [Internet]. 2001;105:297–306. [cited 2023 Jun 8]. Available from: http://www.cell.com/article/S0092867401003348/fulltext.

Nandakumar S, Grushko O, Buttitta LA. Polyploidy in the adult drosophila brain. Elife. 2020;9:1–25.

Davoli T, De Lange T. The causes and consequences of polyploidy in normal development and cancer. Annu Rev Cell Dev Biol [Internet]. 2011;27:585–610. [cited 2022 Feb 27]. Available from: https://pubmed.ncbi.nlm.nih.gov/21801013/.

Childs BG, Durik M, Baker DJ, Van Deursen JM. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nature Medicine. 2015;21:12 [Internet]. 2015;21:1424–35. [cited 2023 Jun 8]. Available from: https://www.nature.com/articles/nm.4000.

Cuollo L, Antonangeli F, Santoni A, Soriani A. The Senescence-Associated Secretory Phenotype (SASP) in the Challenging Future of Cancer Therapy and Age-Related Diseases. Biology. 2020;9:485 [Internet]. 2020;9:485. [cited 2023 Jun 8]. Available from: https://www.mdpi.com/2079-7737/9/12/485/htm.

Tanaka H, Goto H, Inoko A, Makihara H, Enomoto A, Horimoto K, et al. Cytokinetic Failure-induced Tetraploidy Develops into Aneuploidy, Triggering Skin Aging in Phosphovimentin-deficient Mice. J Biol Chem. 2015;290:12984–98.

Kirillova A, Han L, Liu H, Kühn B. Polyploid cardiomyocytes: implications for heart regeneration. Development [Internet]. 2021;148. [cited 2023 Jun 2]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8326922/.

Barriuso D, Alvarez-Frutos L, Gonzalez-Gutierrez L, Motiño O, Kroemer G, Palacios-Ramirez R, et al. Involvement of Bcl-2 Family Proteins in Tetraploidization-Related Senescence. Int J Mol Sci. 2023;24:6374 [Internet]. 2023;24:6374. [cited 2024 Jan 26]. Available from: https://www.mdpi.com/1422-0067/24/7/6374/htm.

Zielke N, Edgar BA, DePamphilis ML. Endoreplication. Cold Spring Harb Perspect Biol [Internet]. 2013;5:a012948. [cited 2023 Jun 2]. Available from: http://cshperspectives.cshlp.org/content/5/1/a012948.full.

Chen EH, Olson EN. Unveiling the Mechanisms of Cell-Cell Fusion. Science (1979) [Internet]. 2005;308:369–73. [cited 2024 Jan 26]. Available from: https://www.science.org/doi/10.1126/science.1104799.

Aguilar PS, Baylies MK, Fleissner A, Helming L, Inoue N, Podbilewicz B, et al. Genetic basis of cell–cell fusion mechanisms. Trends Genet [Internet]. 2013;29:427–37. [cited 2023 Jun 2]. Available from: http://www.cell.com/article/S0168952513000231/fulltext.

Shabo I, Svanvik J, Lindström A, Lechertier T, Trabulo S, Hulit J, et al. Roles of cell fusion, hybridization and polyploid cell formation in cancer metastasis. http://www.wjgnet.com/ [Internet]. 2020;11:121–35. [cited 2023 Jun 2]. Available from: https://www.wjgnet.com/2218-4333/full/v11/i3/121.htm.

Herbein G, Nehme Z. Polyploid Giant Cancer Cells, a Hallmark of Oncoviruses and a New Therapeutic Challenge. Front Oncol. 2020;10:2116.

Si H, Robertson ES. Kaposi’s Sarcoma-Associated Herpesvirus-Encoded Latency-Associated Nuclear Antigen Induces Chromosomal Instability through Inhibition of p53 Function. J Virol [Internet]. 2006;80:697–709. [cited 2023 Jun 2]. Available from: https://journals.asm.org/doi/10.1128/jvi.80.2.697-709.2006.

Weihua Z, Lin Q, Ramoth AJ, Fan D, Fidler IJ. Formation of solid tumors by a single multinucleated cancer cell. Cancer [Internet]. 2011;117:4092–9. [cited 2023 Jun 6]. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/cncr.26021.

Ariizumi T, Ogose A, Kawashima H, Hotta T, Umezu H, Endo N. Multinucleation followed by an acytokinetic cell division in myxofibrosarcoma with giant cell proliferation. J Exp Clin Cancer Res [Internet]. 2009;28:1–6. [cited 2023 Jun 8]. Available from: https://jeccr.biomedcentral.com/articles/10.1186/1756-9966-28-44.

van Rijnberk LM, Barrull-Mascaró R, van der Palen RL, Schild ES, Korswagen HC, Galli M. Endomitosis controls tissue-specific gene expression during development. PLoS Biol [Internet]. 2022;20:e3001597. [cited 2023 Jun 8]. Available from: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001597.

Sroga JM, Ma X, Das SK. Developmental regulation of decidual cell polyploidy at the site of implantation. Front Biosci - Sch [Internet]. 2012;4 S:1475–86. [cited 2023 Jun 2]. Available from: https://www.imrpress.com/journal/FBS/4/4/10.2741/S347.

Normand G, King RW. Understanding cytokinesis failure. Adv Exp Med Biol [Internet]. 2010;675:27–55. [cited 2023 Jun 2]. Available from: https://link.springer.com/chapter/10.1007/978-1-4419-6199-0_3.

Meierjohann S. Effect of stress-induced polyploidy on melanoma reprogramming and therapy resistance. Semin Cancer Biol. 2022;81:232–40.

Darzynkiewicz Z, Halicka HD, Zhao H. Analysis of cellular DNA content by flow and laser scanning cytometry. Adv Exp Med Biol [Internet]. 2010;675:137–47. [cited 2024 Jan 26]. Available from: https://link.springer.com/chapter/10.1007/978-1-4419-6199-0_9.

Frawley LE, Orr-Weaver TL. Polyploidy. Curr Biol. 2015;25:R353–8.

Lv H, Shi Y, Zhang L, Zhang D, Liu G, Yang Z, et al. Polyploid giant cancer cells with budding and the expression of cyclin E, S-phase kinase-associated protein 2, stathmin associated with the grading and metastasis in serous ovarian tumor. BMC Cancer [Internet]. 2014;14:1–9. [cited 2023 Jun 4]. Available from: https://bmccancer.biomedcentral.com/articles/10.1186/1471-2407-14-576.

Mueller RL. Genome Biology and the Evolution of Cell-Size Diversity. Cold Spring Harb Perspect Biol [Internet]. 2015;7:a019125. [cited 2023 Jun 4]. Available from: http://cshperspectives.cshlp.org/content/7/11/a019125.full.

Doyle JJ, Coate JE. Polyploidy, the nucleotype, and novelty: The impact of genome doubling on the biology of the cell. Int J Plant Sci [Internet]. 2019;180:1–52. [cited 2024 Jan 26]. Available from: https://www.journals.uchicago.edu/doi/10.1086/700636.

Tsukaya H. Does Ploidy Level Directly Control Cell Size? Counterevidence from Arabidopsis Genetics. PLoS One [Internet]. 2013;8:e83729. [cited 2023 Jun 4]. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0083729.

Roeder AHK, Cunha A, Ohno CK, Meyerowitz EM. Cell cycle regulates cell type in the Arabidopsis sepal. Development [Internet]. 2012;139:4416–27. [cited 2023 Jun 4]. Available from: https://journals.biologists.com/dev/article/139/23/4416/45427/Cell-cycle-regulates-cell-type-in-the-Arabidopsis.

Pienta KJ, Hammarlund EU, Brown JS, Amend SR, Axelrod RM. Cancer recurrence and lethality are enabled by enhanced survival and reversible cell cycle arrest of polyaneuploid cells. Proc Natl Acad Sci U S A [Internet]. 2021;118:e2020838118. [cited 2023 Jun 4]. Available from: https://www.pnas.org/doi/abs/10.1073/pnas.2020838118.

Mittal K, Donthamsetty S, Kaur R, Yang C, Gupta MV, Reid MD, et al. Multinucleated polyploidy drives resistance to Docetaxel chemotherapy in prostate cancer. Br J Cancer [Internet]. 2017;116:1186–94. [cited 2023 Jun 4]. Available from: https://www.nature.com/articles/bjc201778.

Mirzayans R, Andrais B, Murray D. Roles of Polyploid/Multinucleated Giant Cancer Cells in Metastasis and Disease Relapse Following Anticancer Treatment. Cancers [Internet]. 2018;10:118. [cited 2023 Jun 2]. Available from: https://www.mdpi.com/2072-6694/10/4/118/htm.

Kaur E, Rajendra J, Jadhav S, Shridhar E, Goda JS, Moiyadi A, et al. Radiation-induced homotypic cell fusions of innately resistant glioblastoma cells mediate their sustained survival and recurrence. Carcinogenesis [Internet]. 2015;36:685–95. [cited 2023 Jun 4]. Available from: https://academic.oup.com/carcin/article/36/6/685/276836.

Sclafani RA, Holzen TM. Cell Cycle Regulation of DNA Replication. https://doi.org/10.1146/annurev.genet.41.110306.130308 [Internet]. 2007;41:237–80. [cited 2024 Jan 26]. Available from: https://www.annualreviews.org/doi/abs/10.1146/annurev.genet.41.110306.130308.

Wang XF, Yang SA, Gong S, Chang CH, Portilla JM, Chatterjee D, et al. Polyploid mitosis and depolyploidization promote chromosomal instability and tumor progression in a Notch-induced tumor model. Dev Cell [Internet]. 2021;56:1976–1988.e4. [cited 2023 Jun 2]. Available from: https://pubmed.ncbi.nlm.nih.gov/34146466/.

Grade M, Difilippantonio MJ, Camps J. Patterns of chromosomal aberrations in solid tumors. Chromosomal Instability in Cancer Cells [Internet]. 2015;115–42. [cited 2023 Jun 4]. Available from: https://link.springer.com/chapter/10.1007/978-3-319-20291-4_6.

Nano M, Gemble S, Simon A, Pennetier C, Fraisier V, Marthiens V, et al. Cell-Cycle Asynchrony Generates DNA Damage at Mitotic Entry in Polyploid Cells. Curr Biol [Internet]. 2019;29:3937–3945.e7. [cited 2023 Jun 4]. Available from: http://www.cell.com/article/S0960982219312321/fulltext.

Gemble S, Basto R. CHRONOCRISIS: When Cell Cycle Asynchrony Generates DNA Damage in Polyploid Cells. BioEssays [Internet]. 2020;42:2000105. [cited 2023 Jun 4]. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/bies.202000105.

Pampalona J, Frías C, Genescà A, Tusell L. Progressive Telomere Dysfunction Causes Cytokinesis Failure and Leads to the Accumulation of Polyploid Cells. PLoS Genet [Internet]. 2012;8:1002679. [cited 2023 Jun 4]. Available from: www.plosgenetics.org.

White-Gilbertson S, Voelkel-Johnson C. Giants and monsters: Unexpected characters in the story of cancer recurrence. Adv Cancer Res. 2020;148:201–32.

Fruman DA, Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov [Internet]. 2014;13:140–56. [cited 2023 Jun 9]. Available from: https://pubmed.ncbi.nlm.nih.gov/24481312/.

Pópulo H, Lopes JM, Soares P. The mTOR Signalling Pathway in Human Cancer. Int J Mol Sci [Internet]. 2012;13:1886–918. [cited 2023 Jun 9]. Available from: https://www.mdpi.com/1422-0067/13/2/1886/htm.

Yang X, Zhong W, Cao R. Phosphorylation of the mRNA cap-binding protein eIF4E and cancer. Cell Signal. 2020;73:109689.

Gentilella A, Kozma SC, Thomas G. A liaison between mTOR signaling, ribosome biogenesis and cancer. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms. 2015;1849:812–20.

Ben-Sahra I, Howell JJ, Asara JM, Manning BD. Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science (1979) [Internet]. 2013;339:1323–8. [cited 2023 Jun 9]. Available from: https://www.science.org/doi/10.1126/science.1228792.

Ben-Sahra I, Hoxhaj G, Ricoult SJH, Asara JM, Manning BD. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science (1979) [Internet]. 2016;351:728–33. [cited 2023 Jun 9]. Available from: https://www.science.org/doi/10.1126/science.aad0489.

Jung CH, Ro SH, Cao J, Otto NM, Kim DH. mTOR regulation of autophagy. FEBS Lett [Internet]. 2010;584:1287–95. [cited 2023 Jun 9]. Available from: https://onlinelibrary.wiley.com/doi/full/10.1016/j.febslet.2010.01.017.

Galluzzi L, Pietrocola F, Pedro JMB-S, Amaravadi RK, Baehrecke EH, Cecconi F, et al. Autophagy in malignant transformation and cancer progression. EMBO J [Internet]. 2015;34:856–80. [cited 2023 Jun 9]. Available from: https://onlinelibrary.wiley.com/doi/full/10.15252/embj.201490784.

Rosenfeldt MT, Ryan KM. The multiple roles of autophagy in cancer. Carcinogenesis [Internet]. 2011;32:955–63. [cited 2023 Jun 9]. Available from: https://dx.doi.org/10.1093/carcin/bgr031.

Jung CH, Seo M, Otto NM, Kim DH. ULK1 inhibits the kinase activity of mTORC1 and cell proliferation. Autophagy [Internet]. 2011;7:1212–21. [cited 2023 Jun 9]. Available from: https://www.tandfonline.com/doi/abs/10.4161/auto.7.10.16660.

Oh WJ, Wu CC, Kim SJ, Facchinetti V, Julien LA, Finlan M, et al. mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO J [Internet]. 2010;29:3939–51. [cited 2023 Jun 9]. Available from: https://onlinelibrary.wiley.com/doi/full/10.1038/emboj.2010.271.

Malakar P, Stein I, Saragovi A, Winkler R, Stern-Ginossar N, Berger M, et al. Long noncoding RNA MALAT1 regulates cancer glucose metabolism by enhancing mTOR-Mediated Translation of TCF7L2. Cancer Res. 2019;79:2480–93.

Malakar P, Shilo A, Mogilevsky A, Stein I, Pikarsky E, Nevo Y, et al. Long noncoding RNA MALAT1 promotes hepatocellular carcinoma development by SRSF1 upregulation and mTOR activation. Cancer Res. 2017;77:1155–67.

Karni R, Hippo Y, Lowe SW, Krainer AR. The splicing-factor oncoprotein SF2/ASF activates mTORC1. Proc Natl Acad Sci U S A [Internet]. 2008;105:15323–7. [cited 2023 Feb 16]. Available from: https://pubmed.ncbi.nlm.nih.gov/18832178/.

Karni R, De Stanchina E, Lowe SW, Sinha R, Mu D, Krainer AR. The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat Struct Mol Biol [Internet]. 2007;14:185–93. [cited 2023 Feb 16]. Available from: https://pubmed.ncbi.nlm.nih.gov/17310252/.

留言 (0)

沒有登入
gif