RNA modifications in cellular metabolism: implications for metabolism-targeted therapy and immunotherapy

Boccaletto, P. et al. MODOMICS: a database of RNA modification pathways. 2021 update. Nucleic Acids Res. 50, D231–D235 (2022).

Article  CAS  PubMed  Google Scholar 

Yue, Y., Liu, J. & He, C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev. 29, 1343–1355 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiao, Z., Dai, Z. & Locasale, J. W. Metabolic landscape of the tumor microenvironment at single cell resolution. Nat. Commun. 10, 3763 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Koenen, M., Hill, M. A., Cohen, P. & Sowers, J. R. Obesity, adipose tissue and vascular dysfunction. Circ. Res. 128, 951–968 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boulton, A. Strengthening the International Diabetes Federation (IDF). Diabetes Res Clin. Pract. 160, 108029 (2020).

Article  PubMed  Google Scholar 

Powell, E. E., Wong, V. W. & Rinella, M. Non-alcoholic fatty liver disease. Lancet 397, 2212–2224 (2021).

Article  CAS  PubMed  Google Scholar 

Long, G. V. et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol. 20, 1083–1097 (2019).

Article  CAS  PubMed  Google Scholar 

Tannir, N. M. et al. Efficacy and safety of telaglenastat plus cabozantinib vs placebo plus cabozantinib in patients with advanced renal cell carcinoma: the CANTATA randomized clinical trial. JAMA Oncol. 8, 1411–1418 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Goodwin, P. J. et al. Effect of metformin vs placebo on invasive disease-free survival in patients with breast cancer: the MA.32 randomized clinical trial. JAMA 327, 1963–1973 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

An, Y. & Duan, H. The role of m6A RNA methylation in cancer metabolism. Mol. Cancer 21, 14 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai, X. et al. N6-methyladenosine modification and metabolic reprogramming of digestive system malignancies. Cancer Lett. 544, 215815 (2022).

Article  CAS  PubMed  Google Scholar 

Yue, S. W. et al. m6A-regulated tumor glycolysis: new advances in epigenetics and metabolism. Mol. Cancer 22, 137 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Everts, B. et al. Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells. Blood 120, 1422–1431 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akkaya, M. et al. Second signals rescue B cells from activation-induced mitochondrial dysfunction and death. Nat. Immunol. 19, 871 (2018). -+.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lauterbach, M. A. et al. Toll-like receptor signaling rewires macrophage metabolism and promotes histone acetylation via ATP-citrate lyase. Immunity 51, 997 (2019).

Article  CAS  PubMed  Google Scholar 

Wang, R. N. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cohn, W. E. & Volkin, E. Nucleoside-5′-phosphates from ribonucleic acid. Nature 167, 483–484 (1951).

Article  CAS  Google Scholar 

Holley, R. W., Everett, G. A., Madison, J. T. & Zamir, A. Nucleotide sequences in the yeast alanine transfer ribonucleic acid. J. Biol. Chem. 240, 2122–2128 (1965).

Article  CAS  PubMed  Google Scholar 

Jia, G. F. et al. N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7, 885–887 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Desrosiers, R., Friderici, K. & Rottman, F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc. Natl Acad. Sci. USA 71, 3971–3975 (1974).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Adams, J. M. & Cory, S. Modified nucleosides and bizarre 5′-termini in mouse myeloma mRNA. Nature 255, 28–33 (1975).

Article  CAS  PubMed  Google Scholar 

Pan, T. Modifications and functional genomics of human transfer RNA. Cell Res. 28, 395–404 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lyons, S. M., Fay, M. M. & Ivanov, P. The role of RNA modifications in the regulation of tRNA cleavage. FEBS Lett. 592, 2828–2844 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jacob, R., Zander, S. & Gutschner, T. The dark side of the epitranscriptome: chemical modifications in long non-coding RNAs. Int J. Mol. Sci. 18, 2387 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Sun, Z. et al. Aberrant NSUN2-mediated m(5)C modification of H19 lncRNA is associated with poor differentiation of hepatocellular carcinoma. Oncogene 39, 6906–6919 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meyer, K. D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang, H., Weng, H. & Chen, J. m(6)A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer. Cancer Cell 37, 270–288 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, Y. et al. N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat. Cell Biol. 16, 191–198 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fustin, J. M. et al. RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell 155, 793–806 (2013).

Article  CAS  PubMed  Google Scholar 

Aguilo, F. et al. Coordination of m(6)A mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming. Cell Stem Cell 17, 689–704 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schwartz, S. et al. High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell 155, 1409–1421 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, X. et al. FTO is required for myogenesis by positively regulating mTOR-PGC-1alpha pathway-mediated mitochondria biogenesis. Cell Death Dis. 8, e2702 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dina, C. et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat. Genet 39, 724–726 (2007).

Article  CAS  PubMed  Google Scholar 

Liu, J. et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10, 93–95 (2014).

Article  CAS  PubMed  Google Scholar 

Wang, P., Doxtader, K. A. & Nam, Y. Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol. Cell 63, 306–317 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang, J. et al. Solution structure of the RNA recognition domain of METTL3-METTL14 N(6)-methyladenosine methyltransferase. Protein Cell 10, 272–284 (2019).

Article  CAS  P

留言 (0)

沒有登入
gif