Generating human bone marrow organoids for disease modeling and drug discovery

Tuveson, D. & Clevers, H. Cancer modeling meets human organoid technology. Science 364, 952–955 (2019).

Article  CAS  PubMed  Google Scholar 

Kim, J., Koo, B.-K. & Knoblich, J. A. Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21, 571–584 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Veninga, V. & Voest, E. E. Tumor organoids: opportunities and challenges to guide precision medicine. Cancer Cell 39, 1190–1201 (2021).

Article  CAS  PubMed  Google Scholar 

Li, R. et al. A pro-inflammatory stem cell niche drives myelofibrosis through a targetable galectin 1 axis. Preprint at bioRxiv https://doi.org/10.1101/2023.08.05.550630 (2023).

Méndez-Ferrer, S. et al. Bone marrow niches in haematological malignancies. Nat. Rev. Cancer 20, 285–298 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Lucas, D. Structural organization of the bone marrow and its role in hematopoiesis. Curr. Opin. Hematol. 28, 36–42 (2020).

Article  Google Scholar 

Morrison, S. J. & Scadden, D. T. The bone marrow niche for haematopoietic stem cells. Nature 505, 327–334 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jardine, L. et al. Blood and immune development in human fetal bone marrow and Down syndrome. Nature 598, 327–331 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baryawno, N. et al. A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia. Cell 177, 1915–1932.e16 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tikhonova, A. N. et al. The bone marrow microenvironment at single-cell resolution. Nature 569, 222–228 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baccin, C. et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat. Cell Biol. 22, 38–48 (2020).

Article  CAS  PubMed  Google Scholar 

Kent, D., Dykstra, B. & Eaves, C. Isolation and assessment of long‐term reconstituting hematopoietic stem cells from adult mouse bone marrow. Curr. Protoc. Stem Cell Biol. 3, 2A.4.1–2A.4.23 (2007).

Article  Google Scholar 

Bradley, T. & Metcalf, D. The growth of mouse bone marrow cells in vitro. Aust. J. Exp. Biol. Med. Sci. 44, 287–300 (1966).

Article  CAS  PubMed  Google Scholar 

de L, M. et al. Cord-blood engraftment with ex vivo mesenchymal-cell coculture. N. Engl. J. Med. 367, 2305–2315 (2012).

Article  Google Scholar 

Khan, A. O. et al. Post-translational polymodification of β1-tubulin regulates motor protein localisation in platelet production and function. Haematologica 1, 243–260 (2022).

Google Scholar 

Feng, Q. et al. Scalable generation of universal platelets from human induced pluripotent stem cells. Stem Cell Rep. 3, 817–831 (2014).

Article  CAS  Google Scholar 

Ng, E. S. et al. Differentiation of human embryonic stem cells to HOXA+ hemogenic vasculature that resembles the aorta–gonad–mesonephros. Nat. Biotechnol. 34, 1168–1179 (2016).

Article  CAS  PubMed  Google Scholar 

Jing, R. et al. EZH1 repression generates mature iPSC-derived CAR T cells with enhanced antitumor activity. Cell Stem Cell 29, 1181–1196.e6 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao, X. et al. Differentiation and functional comparison of monocytes and macrophages from hiPSCs with peripheral blood derivatives. Stem Cell Rep. 12, 1282–1297 (2019).

Article  CAS  Google Scholar 

Ebrahimi, M. et al. Differentiation of human induced pluripotent stem cells into erythroid cells. Stem Cell Res. Ther. 11, 483 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moreau, T. et al. Large-scale production of megakaryocytes from human pluripotent stem cells by chemically defined forward programming. Nat. Commun. 7, 11208 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khan, A. O. et al. Human bone marrow organoids for disease modelling, discovery and validation of therapeutic targets in hematological malignancies. Cancer Discov. https://doi.org/10.1158/2159-8290.cd-22-0199 (2022).

Zhao, Z. et al. Organoids. Nat. Rev. Methods Prim. 2, 94 (2022).

Article  CAS  Google Scholar 

Wimmer, R. A., Leopoldi, A., Aichinger, M., Kerjaschki, D. & Penninger, J. M. Generation of blood vessel organoids from human pluripotent stem cells. Nat. Protoc. 14, 3082–3100 (2019).

Article  CAS  PubMed  Google Scholar 

Wimmer, R. A. et al. Human blood vessel organoids as a model of diabetic vasculopathy. Nature 565, 505–510 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Popescu, D.-M. et al. Decoding human fetal liver haematopoiesis. Nature 574, 365–371 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roy, A. et al. Transitions in lineage specification and gene regulatory networks in hematopoietic stem/progenitor cells over human development. Cell Rep. 36, 109698 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Raic, A., Naolou, T., Mohra, A., Chatterjee, C. & Lee-Thedieck, C. 3D models of the bone marrow in health and disease: yesterday, today, and tomorrow. MRS Commun. 9, 37–52 (2019).

Article  CAS  PubMed  Google Scholar 

Sharipol, A., Lesch, M. L., Soto, C. A. & Frisch, B. J. Bone marrow microenvironment-on-chip for culture of functional hematopoietic stem cells. Front. Bioeng. Biotechnol. 10, 855777 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Bessy, T., Itkin, T. & Passaro, D. Bioengineering the bone marrow vascular niche. Front. Cell Dev. Biol. 9, 645496 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Voeltzel, T. et al. A minimal standardized human bone marrow microphysiological system to assess resident cell behavior during normal and pathological processes. Biomater. Sci. 10, 485–498 (2021).

Article  Google Scholar 

Giger, S. et al. Microarrayed human bone marrow organoids for modeling blood stem cell dynamics. APL Bioeng. 6, 036101 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fairfield, H. et al. Development of a 3D bone marrow adipose tissue model. Bone 118, 77–88 (2019).

Article  PubMed  Google Scholar 

Glaser, D. E. et al. Organ-on-a-chip model of vascularized human bone marrow niches. Biomaterials 280, 121245 (2022).

Article  CAS  PubMed  Google Scholar 

Chou, D. B. et al. On-chip recapitulation of clinical bone-marrow toxicities and patient-specific pathophysiology. Nat. Biomed. Eng. 4, 394–406 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Zhang, S., Wan, Z. & Kamm, R. D. Vascularized organoids on a chip: strategies for engineering organoids with functional vasculature. Lab Chip 21, 473–488 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aazmi, A. et al. Engineered vasculature for organ-on-a-chip systems. Engineering 9, 131–147 (2022).

Article  Google Scholar 

Marturano-Kruik, A. et al. Human bone perivascular niche-on-a-chip for studying metastatic colonization. Proc. Natl Acad. Sci. USA 115, 1256–1261 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cuenca, M. V. et al. Engineered 3D vessel-on-chip using hiPSC-derived endothelial and vascular smooth muscle cells. Stem Cell Rep. 16, 2159–2168 (2021).

Article  Google Scholar 

Byambaa, B. et al. Bioprinted osteogenic and vasculogenic patterns for engineering 3D bone tissue. Adv. Healthc. Mater. 6, 1700015 (2017).

Article  Google Scholar 

Simunovic, F. & Finkenzeller, G. Vascularization strategies in bone tissue engineering. Cells 10, 1749 (2021).

Article  CAS  PubMed  PubMed Central  Google Sc

留言 (0)

沒有登入
gif