TOLLIP inhibits lipid accumulation and the integrated stress response in alveolar macrophages to control Mycobacterium tuberculosis infection

Shah, J. A. et al. Human TOLLIP regulates TLR2 and TLR4 signaling and its polymorphisms are associated with susceptibility to tuberculosis. J. Immunol. 189, 1737–1746 (2012).

Article  CAS  PubMed  Google Scholar 

Shah, J. A. et al. A functional TOLLIP variant is associated with BCG-specific immune responses and tuberculosis. Am. J. Respir. Crit. Care Med. 196, 502–511 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shah, J. A. et al. Genetic variation in toll-interacting protein is associated with leprosy susceptibility and cutaneous expression of interleukin 1 receptor antagonist. J. Infect. Dis. 213, 1189–1197 (2016).

Article  CAS  PubMed  Google Scholar 

Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

Article  PubMed  Google Scholar 

Jongsma, M. L. et al. An ER-associated pathway defines endosomal architecture for controlled cargo transport. Cell 166, 152–166 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, K., Yuan, R., Zhang, Y., Geng, S. & Li, L. Tollip deficiency alters atherosclerosis and steatosis by disrupting lipophagy. J. Am. Heart Assoc. 6, e004078 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Lu, K., Psakhye, I. & Jentsch, S. Autophagic clearance of polyQ proteins mediated by ubiquitin-Atg8 adaptors of the conserved CUET protein family. Cell 158, 549–563 (2014).

Article  CAS  PubMed  Google Scholar 

Shah, J. A. et al. TOLLIP deficiency is associated with increased resistance to Legionella pneumophila pneumonia. Mucosal Immunol. 12, 1382–1390 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burns, K. et al. Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nat. Cell Biol. 2, 346–351 (2000).

Article  CAS  PubMed  Google Scholar 

Ryan, T. A. et al. Tollip coordinates Parkin‐dependent trafficking of mitochondrial‐derived vesicles. EMBO J. 39, e102539 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zellner, S., Schifferer, M. & Behrends, C. Systematically defining selective autophagy receptor-specific cargo using autophagosome content profiling. Mol. Cell 81, 1337–1354.e8 (2021).

Article  CAS  PubMed  Google Scholar 

Zhang, G. & Ghosh, S. Negative regulation of toll-like receptor-mediated signaling by Tollip. J. Biol. Chem. 277, 7059–7065 (2002).

Article  CAS  PubMed  Google Scholar 

Brissoni, B. et al. Intracellular trafficking of interieukin-1 receptor I requires Tollip. Curr. Biol. 16, 2265–2270 (2006).

Article  CAS  PubMed  Google Scholar 

Pokatayev, V. et al. Homeostatic regulation of STING protein at the resting state by stabilizer TOLLIP. Nat. Immunol. 21, 158–167 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kowalski, E. J. A. & Li, L. Toll-interacting protein in resolving and non-resolving inflammation. Front. Immunol. 8, 511 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Noth, I. et al. Genetic variants associated with idiopathic pulmonary fibrosis susceptibility and mortality: a genome-wide association study. Lancet Respir. Med. 1, 309–317 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, M. et al. Tollip is a critical mediator of cerebral ischaemia–reperfusion injury. J. Pathol. 237, 249–262 (2015).

Article  CAS  PubMed  Google Scholar 

Zhi, H. et al. Tollip negatively regulates vascular smooth muscle cell-mediated neointima formation by suppressing akt‐dependent signaling. J. Am. Heart Assoc. 7, e006851 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Behar, S. M. et al. Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis. Mucosal Immunol. 4, 279–287 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roca, F. J. & Ramakrishnan, L. TNF dually mediates resistance and susceptibility to mycobacteria via mitochondrial reactive oxygen species. Cell 153, 521–534 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berg, R. D. et al. Lysosomal disorders drive susceptibility to tuberculosis by compromising macrophage migration. Cell 165, 139–152 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tzelepis, F. et al. Mitochondrial cyclophilin D regulates T cell metabolic responses and disease tolerance to tuberculosis. Sci. Immunol. 3, eaar4135 (2018).

Article  PubMed  Google Scholar 

Feng, C. G. et al. Mice lacking myeloid differentiation factor 88 display profound defects in host resistance and immune responses to Mycobacterium avium infection not exhibited by Toll-like receptor 2 (TLR2)- and TLR4-deficient animals. J. Immunol. 171, 4758–4764 (2003).

Article  CAS  PubMed  Google Scholar 

Bafica, A. et al. TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J. Exp. Med. 202, 1715–1724 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Watson, R. O. et al. The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy. Cell Host Microbe 17, 811–819 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Philips, J. A., Porto, M. C., Wang, H., Rubin, E. J. & Perrimon, N. ESCRT factors restrict mycobacterial growth. Proc. Natl Acad. Sci. USA 105, 3070–3075 (2008).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Roca, F. J., Whitworth, L. J., Redmond, S., Jones, A. A. & Ramakrishnan, L. TNF induces pathogenic programmed macrophage necrosis in tuberculosis through a mitochondrial–lysosomal–endoplasmic reticulum circuit. Cell 178, 1344–1361 e1311 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lovewell, R. R., Sassetti, C. M. & VanderVen, B. C. Chewing the fat: lipid metabolism and homeostasis during M. tuberculosis infection. Curr. Opin. Microbiol. 29, 30–36 (2016).

Article  CAS  PubMed  Google Scholar 

Peyron, P. et al. Foamy macrophages from tuberculous patients’ granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog. 4, e1000204 (2008).

Article  PubMed  PubMed Central  Google Scholar 

Lo, Y. L. S., Beckhouse, A. G., Boulus, S. L. & Wells, C. A. Diversification of TOLLIP isoforms in mouse and man. Mamm. Genome 20, 305–314 (2009).

Article  CAS  PubMed  Google Scholar 

Russell, D. G., Huang, L. & VanderVen, B. C. Immunometabolism at the interface between macrophages and pathogens. Nat. Rev. Immunol. 19, 291–304 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guilliams, M. et al. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J. Exp. Med. 210, 1977–1992 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cohen, S. B. et al. Alveolar macrophages provide an early Mycobacterium tuberculosis niche and initiate dissemination. Cell Host Microbe 24, 439–446.e4 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moguche, A. O. et al. ICOS and Bcl6-dependent pathways maintain a CD4 T cell population with memory-like properties during tuberculosis. J. Exp. Med. 212, 715–728 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

GTEx Consortium. Human genomics. The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

Article  PubMed Central  Google Scholar 

Nwosu, Z. C., Ebert, M. P., Dooley, S. & Meyer, C. Caveolin-1 in the regulation of cell metabolism: a cancer perspective. Mol. Cancer

留言 (0)

沒有登入
gif